Ingested plastics have been reported in necropsies of marine birds, turtles, mammals, fish, crustaceans and squid (Laist 1997, Ocean Studies Board 2008). Herein, we report the first record of plastic ingestion by a White-tailed Tropicbird Phaethon lepturus (hereafter WTTR) sampled on O’ahu (Hawai‘i). This observation adds a second tropicbird species (order Phaethontiformes) to the one sampled thus far and found to ingest plastic, and increases to 116 the number of seabird species in which this phenomenon has been observed.

Previously, comprehensive reviews of the literature reported evidence of plastic ingestion for at least 36.9% (115 of 311) of the seabird species sampled to date (Laist 1997, Ocean Studies Board 2008). Yet, there are significant differences in the incidence of ingestion among different orders, with tubenose seabirds (Procellariiformes: albatrosses, petrels, shearwaters, storm-petrels, diving petrels) most susceptible (63.4%, 64 of 101), and penguins (Sphenisciformes) the least (12.5%, 2 of 16). These disparities have been attributed to the higher susceptibility of surface-foragers to scavenge and eat floating plastic (e.g., Ryan 1987). Yet, despite the oceanic habits of tropicbirds, plastic ingestion has been investigated in only one of the three tropicbird species to date (Table 2).

As part of a collaborative research program in which specimens are salvaged for investigation of heath, diet and plastic ingestion, we investigated seabird specimens delivered to Sea Life Park, O’ahu (Hawai‘i), since 2009. Two of us (JAJ and KDH) necropsied three WTTRs following standardized necropsy protocols (van Franeker 2004). The specimens belonged to the dorothea subspecies and were juveniles (first- or second-year birds), on the basis of their plumage (Pyle 2008). They were in poor body condition, as evidenced by the low breast muscle (pectoralis) scores (value range: 0 to 3) and subcutaneous / intestinal fat scores (value range: 0 to 3; Table 1). The stomach of one of these specimens contained a large (14.5 cm long, 3.25 cm wide) pale blue plastic fragment (Fig. 1). We contend that this large floating item was mistaken for an epipelagic fish, because of its size, shape and coloration.

WTTR is a widely distributed species, ranging throughout the world’s tropical and subtropical oceans: the southern Indian, the western and central Pacific, the south Atlantic, and the Caribbean (Lee & Walsh-McGehee 1998). Approximately 1 800 pairs breed in Hawai‘i, mostly in the main Hawaiian Islands: Kauai, Molokai‘i, Lanai‘i, Hawai‘i, and the offshore islet of Mokoli‘i. Although a few pairs nest on some areas of O‘ahu, their abundance is poorly known (Harrison 1990, Lee & Walsh-McGehee 1998). WTTRs forage in deep water, rarely in association with subsurface predators (Harrison 1990), and feed on epipelagic prey, largely flying fish (2–12 cm in length), supplemented with squid and crustaceans (Harrison 1990, Lee & Walsh-McGehee 1998). WTTRs forage by plunge diving from 15–20 m above the water, and can consume very large fish, up to 18% of their body mass (Harrison 1990). While WTTRs do not forage in multi-species flocks involving subsurface

<table>
<thead>
<tr>
<th>Collection date</th>
<th>Age</th>
<th>Sex diagnostics</th>
<th>Weight (g)</th>
<th>Wing (mm)</th>
<th>Tarsus (mm)</th>
<th>Breast score(^a)</th>
<th>Fat score(^a)</th>
<th>Stomach contents weight (g)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>17 November 2012</td>
<td>FY–SY</td>
<td>♂</td>
<td>252</td>
<td>255</td>
<td>20.2</td>
<td>0</td>
<td>1/0</td>
<td>7</td>
<td>No plastic, 7 squid beaks</td>
</tr>
<tr>
<td>31 December 2010</td>
<td>SY</td>
<td>♀</td>
<td>191</td>
<td>235</td>
<td>22.8</td>
<td>1</td>
<td>0/0</td>
<td>15</td>
<td>1 plastic fragment. No prey</td>
</tr>
<tr>
<td>17 January 2010</td>
<td>FY–SY</td>
<td>♂</td>
<td>205</td>
<td>224</td>
<td>21.1</td>
<td>1</td>
<td>1/0</td>
<td>0</td>
<td>Empty</td>
</tr>
</tbody>
</table>

FY = first year; SY = second year
\(^a\) Van Franeker (2004).
predators around the Main Hawaiian Islands (Hebshi et al. 2008),
they frequently (45%, or 5 of 11 foraging birds) associate with
small multi-species seabird flocks over small (< 0.6 m) yellowfin
tuna *Thunnus albacares* and skipjack tuna *Katsuwonus pelamis*
in the Eastern Tropical Pacific (Spear & Ainley 2005).

Although the diet of WTTR in Hawai‘i is poorly known, it is likely
similar to that of the Red-tailed Tropicbird (*P. rubricauda*, RTTR;
Schreiber & Schreiber 1993, Lee & Walsh-McGeehee 1998; Spear
& Ainley 2007). Colony sampling and at-sea collections have
documented plastic ingestion by RTTR in the North Pacific (Table
2). Yet, because RTTRs ingest fragments considered too small for
direct ingestion, plastic pollution in this species has been attributed
to secondary ingestion via their prey (Harrison 1990), an indication
of potential emerging pathways of pollution transfer in epipelagic
food-webs. RTTRs do not forage in multi-species flocks involving
subsurface predators around the Main Hawaiian Islands (Hebshi et
al. 2008). However, they occasionally (28%, or 7 of 25 foraging
birds) feed in association with surface-feeding tuna and dolphinfish
Coryphaena hippurus in the Eastern Tropical Pacific (Spear &
Ainley 2005).

This new record highlights the susceptibility of tropicbirds to plastic
ingestion and underscores the need for additional information on the
other RTTR (4 subspecies) and WTTR (6 subspecies) populations (ITIS
2013). Additionally, three disjunct Red-billed Tropicbird *Phaethon
aethereus* (RBTR) subspecies, which inhabit tropical waters of the
Atlantic Ocean, the northwest Indian Ocean and the eastern Pacific,
have never been assessed for plastic ingestion. In the Eastern Tropical
Pacific, RBTR breed on the Galapagos Islands, Ecuador, and off the
coast of Mexico (del Hoyo et al. 1992). RBTR frequently (46%, or 5
of 13 foraging birds) feed over dolphins and small scombrids in the
Eastern Tropical Pacific (Spear & Ainley 2005).

Together, these observations of plastic ingestion reinforce the value
of marine birds as bio-indicators of ocean plastic pollution (Ryan
1987, Ryan et al. 2009). Thus, we advocate the establishment
of longitudinal sampling programs to quantify plastic ingestion
incidence and loads in epipelagic tropical ecosystems, targeting
seabirds and associated predatory fishes. Such monitoring could
rely on opportunistic sampling by long-term monitoring programs
(e.g., Robards et al. 1993, Nevins et al. 2005), augmented by
periodic multi-species studies (e.g., Sileo et al. 1990, Spear et

Table 2

Summary of tropicbird plastic ingestion records by species

<table>
<thead>
<tr>
<th>Species</th>
<th>Study type (site)</th>
<th>Age</th>
<th>Method</th>
<th>Sample size (incidence, %)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTTR</td>
<td>At sea (E.T.P.)</td>
<td>After hatch-year</td>
<td>Collection</td>
<td>Necropsy</td>
<td>6 (0)</td>
</tr>
<tr>
<td>RTTR</td>
<td>At sea (N.P.T.Z.)</td>
<td>After hatch-year</td>
<td>Bycatch</td>
<td>Necropsy</td>
<td>1 (100)</td>
</tr>
<tr>
<td>RTTR</td>
<td>Colony (Midway)</td>
<td>After hatch-year</td>
<td>Sampling</td>
<td>Lavage</td>
<td>47 (4)</td>
</tr>
<tr>
<td>RTTR</td>
<td>Colony (Johnston)</td>
<td>Hatch-year b</td>
<td>Sampling</td>
<td>Lavage</td>
<td>50 (4)</td>
</tr>
<tr>
<td>RTTR</td>
<td>Colony (Midway)</td>
<td>Hatch-year b</td>
<td>Sampling</td>
<td>Lavage</td>
<td>64 (12)</td>
</tr>
<tr>
<td>RTTR</td>
<td>Colony (Tern Island)</td>
<td>Hatch-year b</td>
<td>Sampling</td>
<td>Lavage</td>
<td>50 (14)</td>
</tr>
<tr>
<td>WTTR</td>
<td>Beach-cast (O‘ahu)</td>
<td>FY–SY</td>
<td>Salvage</td>
<td>Necropsy</td>
<td>3 (33)</td>
</tr>
</tbody>
</table>

Species: RTTR = red-tailed tropicbird; WTTR = white-tailed tropicbird; Study sites: E.T.P. = Eastern Tropical Pacific, N.P.T.Z. = North Pacific Transition Zone; Age classes: FY = first year; SY = second year.

a Breeding birds
b Chicks sampled on a nesting colony

Fig. 1. Left panel: White-tailed Tropicbird specimen, with ingested plastic fragment still inside of the stomach lining. Right panel: close-up of the ingested plastic fragment (14.5 cm long, 3.25 cm wide).

al. 1995). Together, this monitoring could provide the time series required for tracking emerging pollution trends in new locations and species (e.g., Auman 2004, Ryan et al. 2009).

ACKNOWLEDGEMENTS

The National Fish and Wildlife Foundation provided funding for supplies and salaries (grant 35765 to KDH). HPU supported JAJ through a work-study position and provided the laboratory facilities for performing necropsies and quantifying stomach contents. We also thank Jan van Franeker, Peter Ryan and David Ainley, whose suggestions greatly improved this manuscript.

REFERENCES

