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ABSTRACT

BORRELLE, S.B. & FLETCHER, A.T. 2017. Will drones reduce investigator disturbance to surface-nesting seabirds? Marine Ornithology
45: 89-94.

Many colonial-nesting seabird species are highly threatened, and their conservation is a global priority. Yet long-term population data for
many species are sporadic, given the location, physical nature of many colonies, and known negative impacts of investigator interaction.
The low cost of unmanned aerial systems (UASs), or drones, has democratized access to remote sensing data with high spatial and temporal
resolution. Although there are limitations and risks of employing drones for conservation and data-collection purposes, the benefits
include the ability to monitor a greater number of colonies at higher spatial and temporal resolutions than traditional field methods. The
establishment of drone-operation guidelines, however, is an important first-step in minimizing disturbance to surface-nesting birds, given
that many surface-nesting birds are particularly vulnerable to disturbances that can reduce reproductive output and increase stress responses.
Research on the disturbance to wildlife from drones is in its infancy, but here we briefly review whether and how studies have evaluated
the impact of drones on their study species. We review as well the variability in physiological and behavioural responses observed, and
whether the studies evaluated the risk of malfunction or crashes, common with off-the-shelf drone platforms. We found that attention to
evaluating disturbance and risk assessments has been limited, but preliminary evidence suggests drones can reduce disturbance impacts on
some species. On the other hand, in the face of widespread drone deployment, inexpensive and rapid data collection should not be put ahead

of the potential risk and impact on species.
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Unmanned aerial systems (UASs or drones) are increasingly used
for conservation and ecological applications (Linchant ef al. 2015,
Schiffman 2014). Advances in consumer electronics, open-source
flight-control software, and data-transfer protocols are rapidly
reducing the cost and expertise required to use drones for a range
of disciplines (Crutsinger et al. 2016). The rapid deployment of
drones in ecology has provided unique opportunities to advance our
understanding of many systems and species (Grémillet et al. 2012,
Hodgson et al. 2016). Conservation drones have been deployed to
reduce poaching of Rhinoceros Ceratotherium spp. in South Africa
by the Olifants West Conservancy (Bergenas et al. 2013), to survey
elephants Loxodonta spp. in South Africa (Vermeulen er al. 2013),
to survey orang-utan Pongo obelii nests in Sumatra (Wich et al.
2015), and to survey marine mammals (Koski ef al. 2010, Smith
et al. 2016). They have also been used in seabird research (e.g.,
Grémillet et al. 2012, McClellan et al. 2016; Table 1). Indeed, the
application of such technology aligns well with conservationists’
and ecologists’ data requirements for seabird research; better, in
fact, than alternative remote-sensing methods, such as satellite- or
airplane-based sensors (Hodgson ef al. 2016). Therefore, it is not
surprising that there is an increase in research using drone-collected
data and in publications on the subject (van Gemert et al. 2014).
However, caution is needed with regard to potential adverse impacts
of drone interactions for sensitive species (Vas et al. 2015).

The life-history strategies of many avian taxa are likely to
make them differentially sensitive to investigator disturbances
(Blackmer et al. 2004, Carey 2009). Long-lived species, such as
seabirds, generally have high reproduction costs, and therefore

breeders adjust their investment to balance the costs of survival
and reproduction (Blackmer et al. 2004, Warham 1990). Seabirds
are more likely to skip breeding in years when conditions are
unfavourable or when they are highly disturbed (Blackmer et
al. 2004, Warham 1990). The impact of investigators on the
productivity of seabirds has long been of interest to the conservation
community. Hickey (1955) stated that bird populations have a
field reality and a paper existence. That is, colony productivity
between observed seabird colonies and undisturbed colonies is
likely inconsistent, and this subsequently affects our understanding
of seabird population dynamics. Seabird species worldwide are
under threat: 17 (5%) are listed as critically endangered, 101 (29%)
as globally threatened, and another 35 (10%) as near-threatened,
according to BirdLife International (2015, see also IUCN 2015).
Conservation and monitoring activities that reduce breeding success
increase the likelihood of continued decline and eventual extinction
of vulnerable populations.

While investigators may not pose a direct mortality risk, animals
may still perceive human presence as a predation risk. Predation-
risk responses may induce a physiological stress response, in which
corticosteroids are released (Blackmer et al. 2004, Carey 2009).
Such stress responses can affect reproductive output and long-term
physiological condition if the disturbance is repeated (Blackmer et al.
2004), and some investigators have found direct effects on mortality
rates (e.g., Feare 1976). Alternatively, animals may respond to
investigator disturbance by fleeing the area, abandoning young or
expending energy to relocate, which may reduce reproductive output
(Carey 2009, Swenson et al. 1997). Disturbance from investigators
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was an important factor in the decreased reproductive success of
Florida Brown Pelicans Pelecanus occidentalis and Double-crested
Cormorants Phalacrocorax auritus, in which hatching success was
negatively correlated to the frequency of investigators checking the
nest sites (Anderson & Keith 1980). Beale & Monaghan (2004)
found that nesting success in Common Murre Uria aalge and
Black-legged Kittiwake Rissa tridactyla was negatively correlated
with distance of visitors to nests (when the load of people was kept
constant), and greater visitor numbers to the colony resulted in a
13% increase in nesting failure.

In the absence of observed behavioural changes, a number of
species have shown physiological changes, including heart rate
changes in Adélie Penguins Pygoscelis adeliae (Nimon et al.
1995), and hormonal responses in Magellanic Penguins Spheniscus
magellanicus (Fowler 1999). Increased heart rates in disturbed
birds have been linked to elevated metabolic rate, which may cause
birds to decline in condition and, in turn, lead to higher rates of
nest abandonment or breeding failures (Beale & Monaghan 2004,
Cadiou & Monnat 1996). Further, investigations of nesting success
between undisturbed colonies and disturbed colonies remain
challenging, as disturbance is an inherent function of investigator
presence. Such disturbance to vulnerable surface-nesting seabirds
may exacerbate declines in populations, or influence the assessment
of species’ demographic parameters, which ultimately may lead
to inappropriate conservation management actions or research
programs (Blackmer et al. 2004).

The benefits of drones for collection of data on surface-nesting
birds are compelling, including perceived reductions in impact and
greater spatial coverage and frequency (McClelland et al. 2016).
However, if used inappropriately, drones may scare birds away from
nests, cause birds to abandon chicks, or chase away entire colonies,
leading to significant breeding failures if the disturbance is severe
(Grémillet et al. 2012). While behavioural changes in response to
drones may not be observed immediately, delayed physiological
responses, as seen in penguin species, may be triggered, leading
to behavioural changes later (Beale & Monaghan 2004). In this
case, nesting success may be reduced, or nest abandonment
may increase. The extent and severity of these effects will be
influenced by the sensitivity of the species in question, intensity of
disturbance caused by drone use, and the time at which surveying
is conducted (e.g., when birds are prospecting for nests, or during
chick provisioning). Therefore, investigators would ideally plan
drone-surveying activities for periods when impact is minimised.
However, it is likely that worst period for the birds may be the ideal
period for data collection.

We searched Google Scholar and Web of Science using the terms
“drone*”, “UAV*”, “UAS*”, and “birds” or variations of these
terms, for published studies using drones with colonial-nesting
bird species (Table 1). We selected only those studies that used
off-the shelf drone platforms (i.e., not those that need to be
flown by trained pilots). Of the few studies published to date that
use drones for collection of data on surface-nesting birds, four
of 11 studies specifically described methods for recording and
evaluating species’ responses to drone activity (Table 1). Two of
these (Riimmler ez al. 2015; Vas et al. 2015) were specifically aimed
at evaluating the impact of drones on their study species. Ratcliffe
et al. (2015) found that drone presence did not affect behavioural
responses in Gentoo Penguins Pygoscelis papua, when certain
heights and distances were maintained. Similarly, McClelland et

al. (2016) observed no behavioural response in Tristian Albatrosses
Diomedea dabbenena after use of a small, low-cost drone platform.
Riimmler et al. (2015), however, detected distinct behavioural
responses in Adélie Penguins, even at the highest altitude they
assessed. This suggests that some species or colonies may be more
sensitive to drone presence than others (A. Bond, pers. comm.
2017). For instance, in the case of Adélie Penguins, which nest in
the open, their main outside threat to breeding success comes from
the air in the form of avian predators (Young 1994), and therefore
it is not surprising that they would be sensitive to anything flying
over them. While a number of studies provided anecdotal evidence
of disturbance responses, or lack thereof, none of the studies
reported a risk assessment, and only one (Ratcliffe et al. 2015)
acknowledged the risk of malfunctions or crashes in collecting
data with the use of drones. Although limited, the evidence thus
far suggests that drones reduce disturbance to surface-nesting birds
compared with traditional in-colony data-collection methods, at
least for some species (Table 1).

Researchers may assume that, in addition to providing more
accurate observations, drones may reduce investigator impact,
with consequent improvement in long-term reproductive output,
compared with traditional in-colony monitoring. However, it is
difficult to test this assumption in the absence of comparative
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Fig. 1. Conceptual model of drone system and operation vs. seabird
ecology compromises, in which (a) represents species-observable
behaviour and (b) is physiological impacts of drone investigation.
Panel A represents system and operational factors likely to increase
negative impacts for seabirds. These may include: operator effective
co-location, large platforms operated at low altitude with significant
noise and visual signatures, operations with extended duration and
high frequency and/or aerial vehicles that mimic predator outline
or flight profiles. Panel B represents the application of disturbance-
minimisation measures. These may include: standoff distances for
operators, increased platform standoff enabled by telephoto lenses
and sensors (e.g., Kemper & Vasel 2016), smaller low-visibility air
vehicles with low audio signatures.
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disturbance assessments. Furthermore, there are risks to species
because of platform malfunctions, or operator and signal errors
(Sanz Mufioz et al. 2012), which may result in a drone crashing into
a colony or environmentally sensitive area. The choice of platform
and the skills of the operator will dictate the level of risk to species
or site, but researchers should not overlook this when choosing to
use drones for data collection.

The dichotomy between conservation research and the impact of
investigators on wildlife can present unexpected challenges for
conservation efforts, particularly for management of threatened
species. Wildlife are bound to interact with investigators and their
tools, potentially causing stress, harm, or death to animals (Gotmark
1992). There are trade-offs for all conservation actions, whether
they are explicitly known or unintentional (Hirsch ez al. 2011).
Effective long-term conservation of a species requires ecological
understanding, and, therefore, interactions of investigators with
populations or specimen collection are warranted (Nisbet & Paul
2004, Winker et al. 2010).

Minimally invasive remote sensing of seabird-colony status is
possible with intelligent selection of drone systems. Remote sensing
fundamentals, including minimum target-feature dimensions,
colour, shape, and texture, will inform the maximum appropriate
spatial resolution. Current flexibility in drone configuration, sensor
specification, and data telemetry affords researchers a range of
options to reduce potential behavioural and physiological impacts
of investigation (Fig. 1, panel A vs. panel B). Perceived predation
risk may be reduced by minimising platform size, outline and
flight profile, speed, proximity, and colour (Fig. 1, panel B).
Standoff distance can be increased by using stabilised telephoto
lenses and high-resolution cameras, as smaller and higher-quality
cameras become available (Altena & Goedemé 2014). Selection of
propulsion systems to reduce noise signatures may further reduce
perceived threat (Sinibaldi & Marino 2013). Timing, duration, and
frequency of data capture should be considered in conjunction with
drone-system specification to optimise the trade-off between ideal
data collection and minimal disturbance. This optimisation process
can be informed only by an understanding of the ecology and
biology of the study species, or, in the absence of such knowledge,
by taking a precautionary approach. Importantly, the desire to
capture data quickly or cheaply should not be placed ahead of
employing drone systems that minimise potential impact on the
species of concern.

Studies have shown empirically that there are negative impacts
associated with investigator presence at study colonies. Therefore,
drones provide an alternative means of collecting important
demographic and environmental data. For surface-nesting birds,
drone technology can provide a more accurate method of collecting
population data because of its ability to take large-scale images of
colonies, which can be counted carefully in the lab and compared
through time, therefore reducing the uncertainty of estimates in
traditional observer counts (Hodgson et al. 2016, van Gemert et al.
2014). However, the disturbance of colonies from impulsive drone
deployment may affect some species in much the same way as
traditional in-colony data collection methods.

Field biologists have an obligation to evaluate their impact on the
species and system that they study, and to minimise any adverse
effects (Nisbet & Paul 2004). As with any study, investigators
employing drone technology for monitoring surface-nesting seabirds

should carefully consider the question being asked and the potential
gains in knowledge, and weigh them against the consequences of
disturbance (Nisbet & Paul 2004). Further testing of the impacts
on study species and non-target species, as well as assessments of
risks of using drones, are an important priority (Grémillet et al.
2012). The development of drone-operation guidelines for wildlife
will help address and minimise potential disturbance on wildlife;
however, it may not be a case of “one size fits all” for surface-
nesting birds.
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