Menu

Volume 49, No. 2

Search by author or title:

Mercury contamination in the endocrine glands of Black-tailed Gulls Larus crassirostris on Kabushima (Kabu Island), Japan


Authors

YASUAKI NIIZUMA*, HINAKO TANI, YUKI YAMASHITA, MITSUKI ITO, MIHO MAEDA

Citation

NIIZUMA, Y., TANI, H., YAMASHITA, Y., ITO, M. & MAEDA, M. 2021. Mercury contamination in the endocrine glands of Black-tailed Gulls Larus crassirostris on Kabushima (Kabu Island), Japan. Marine Ornithology 49: 329 - 333
http://doi.org/10.5038/2074-1235.49.2.1440

Received 29 April 2021, accepted 09 August 2021

Date Published: 2021/10/15
Date Online: 2021/10/14
Key words: gull, marine pollution, Sanriku coast, upper trophic level predator, seabird

Abstract

A colony of about 30 000 pairs of Black-tailed Gull Larus crassirostris nest on Kabushima (Kabu Island), which is located on the northeast mainland coast of Japan (Sanriku Coast, Honshu Island). There, the surface-water Hg concentration is higher than in the North Pacific Ocean. We collected carcasses from the breeding colony to assess the level of mercury (Hg) contamination. We measured Hg concentrations in 10 body tissues, including the endocrine glands. The relative mercury concentrations in the tissue samples (µg/g dry weight) were as follows: adrenal glands > livers > kidneys > blood > pituitaries > gonads > breast muscles > thyroid glands > pancreases > brain stems. Correlations existed between blood mercury levels and all body tissues except for the adrenal glands. Based on these results, we suggest that mercury levels in blood may not be a good indicator for hypothalamic-pituitary-adrenal axis impacts in Black-tailed Gulls.

References


AGUSA, T., MATSUMOTO, T., IKEMOTO, T. ET AL. 2005. Body distribution of trace elements in Black‐tailed Gulls from Rishiri Island, Japan: Age‐dependent accumulation and transfer to feathers and eggs. Environmental Toxicology and Chemistry 24: 2107-2120. doi:10.1897/04-617R.1

BOND, A.L., HOBSON, K.A. & BRANFIREUN, B.A. 2015. Rapidly increasing methyl mercury in endangered Ivory Gull (Pagophila eburnea) feathers over a 130 year record. Proceedings of the Royal Society B 282: 20150032. doi:10.1098/rspb.2015.0032

BURGER, J. & GOCHFELD, M. 2002. Effects of chemicals and pollution on seabirds. In: SCHREIBER, E.A. & BURGER, J. (Eds.) Biology of Marine Birds. Boca Raton, USA: CRC Press.

CHOCHI, M., NIIZUMA, Y. & TAKAGI, M. 2002. Sexual differences in the external measurements of Black-tailed Gulls breeding on Rishiri Island, Japan. Ornithological Science 1: 163-166. doi:10.2326/osj.1.163

FRANCESCHINI, M.D., EVERS, D.C., KENOW, K.P., MEYER, M.W., POKRAS, M. & ROMERO, L.M. 2017. Mercury correlates with altered corticosterone but not testosterone or estradiol concentrations in Common Loons. Ecotoxicology and Environmental Safety 142: 348-354. doi:10.1016/j.ecoenv.2017.04.030

FRANCESCHINI, M.D., LANE, O.P., EVERS, D.C., REED, J.M., HOSKINS, B. & ROMERO, L.M. 2009. The corticosterone stress response and mercury contamination in free-living Tree Swallows, Tachycineta bicolor. Ecotoxicology 18: 514-521. doi:10.1007/s10646-009-0309-2

FREDERICK, P.C., HYLTON, B., HEATH, J.A. & SPALDING, M.G. 2004. A historical record of mercury contamination in southern Florida (USA) as inferred from avian feather tissue: Contribution R‐09888 of the Journal Series, Florida Agricultural Experiment Station. Environmental Toxicology and Chemistry 23: 1474-1478. doi:10.1897/03-403

FURNESS, R.W. & CAMPHUYSEN, C.J. 1997. Seabirds as monitors of the marine environment. ICES Journal of Marine Science 54: 726-737. doi:10.1006/jmsc.1997.0243

GOTO, R., OHURA, T., MIZUTANI, Y. & NIIZUMA, Y. 2018. Mercury contents of the tissues and feathers of Black-tailed Gulls on Kabushima (Kabu Island), Aomori, Japan. Ornithological Science 17: 113-118. doi:10.2326/osj.17.113

ISHII, C., IKENAKA, Y., NAKAYAMA, S.M ET AL. 2014. Contamination status and accumulation characteristics of metals and a metalloid in birds on Teuri Island, Hokkaido, Japan. Japanese Journal of Veterinary Research 62: 143-149. doi:10.14943/jjvr.62.3.143

KIM, E.Y., SAEKI, K., TANABE, S., TANAKA, H. & TATSUKAWA, R. 1996. Specific accumulation of mercury and selenium in seabirds. Environmental Pollution 94: 261-265. doi:10.1016/S0269-7491(96)00110-8

KOZMA, L., PAPP, L., VARGA, É. & GOMBA, S. 1996. Accumulation of Hg(II) ions in mouse adrenal gland. Pathology & Oncology Research 2: 52-55. doi:10.1007/BF02893949

LAMBORG, C., BOWMAN, K., HAMMERSCHMIDT, C. ET AL. 2014. Mercury in the Anthropocene Ocean. Oceanography 27: 76-87. [Accessed online at https://www.jstor.org/stable/24862122 ]

LEE, D.P., HONDA, K. & TATSUKAWA, R. 1987. Comparison of tissue distributions of heavy metals in birds in Japan and Korea. Journal of the Yamashina Institute for Ornithology 19: 103-116. doi:10.3312/jyio1952.19.103

LEWIS, S.A. & FURNESS, R.W. 1993. The role of eggs in mercury excretion by Quail Coturnix coturnix and the implications for monitoring mercury pollution by analysis of feathers. Ecotoxicology 2: 55-64. doi:10.1007/BF00058214

MONTEIRO, L.R. & FURNESS, R.W. 1995. Seabirds as monitors of mercury in the marine environment. Water, Air, and Soil Pollution 80: 851-870. doi:10.1007/BF01189736

NELSON, R.J. 2005. An Introduction to Behavioral Endocrinology, Third Edition. Sunderland, USA: Sinauer Associates, Inc.

PROVENCHER, J.F., FORBES, M.R., HENNIN, H.L. ET AL. 2016. Implications of mercury and lead concentrations on breeding physiology and phenology in an Arctic bird. Environmental Pollution 218: 1014-1022. doi:10.1016/j.envpol.2016.08.052

R CORE TEAM 2018. R: A language and environment for statistical computing. Vienna, Austria: The R Foundation for Statistical Computing.

SUNDERLAND, E.M., KRABBENHOFT, D.P., MOREAU, J.W., STRODE, S.A. & LANDING, W.M. 2009. Mercury sources, distribution, and bioavailability in the North Pacific Ocean: Insights from data and models. Global Biogeochemical Cycles 23: GB2010. doi:10.1029/2008GB003425

TAMASE, K., KITADA, Y., IMOU, M., HASUIKE, A., SASAKI, M. & TANIGAWA, K. 1982. Investigation of mercury content in commercial fresh fish. Food Hygiene and Safety Science 23: 388-392. doi:10.3358/shokueishi.23.388

TARTU, S., GOUTTE, A., BUSTAMANTE, P. ET AL. 2013. To breed or not to breed: Endocrine response to mercury contamination by an Arctic seabird. Biology Letters 9: 20130317. doi:10.1098/rsbl.2013.0317

TARTU, S., LENDVAI, Á.Z., BLÉVIN, P. ET AL. 2015. Increased adrenal responsiveness and delayed hatching date in relation to polychlorinated biphenyl exposure in Arctic-breeding Black-legged Kittiwakes (Rissa tridactyla). General and Comparative Endocrinology 219: 165-172. doi:10.1016/j.ygcen.2014.12.018

THOMPSON, D.R., HAMER, K. & FURNESS, R. 1991. Mercury accumulation in Great Skuas Catharacta skua of known age and sex, and its effects upon breeding and survival. Journal of Applied Ecology 28: 672-684. doi:10.2307/2404575

THOMPSON, D.R., FURNESS, R.W. & WALSH, P.M. 1992. Historical changes in mercury concentrations in the marine ecosystem of the north and north-east Atlantic Ocean as indicated by seabird feathers. Journal of Applied Ecology 29: 79-84. doi:10.2307/2404350

TOMITA, N., MIZUTANI, Y., FUJII, H. ET AL. 2010. Mortality of adult Black-tailed Gulls Larus crassirostris on Kabu Island, Aomori Prefecture. Japanese Journal of Ornithology 59: 80-83. doi:10.3838/jjo.59.80

VO, A.-T.E., BANK, M.S., SHINE, J.P. & EDWARDS, S.V. 2011. Temporal increase in organic mercury in an endangered pelagic seabird assessed by century-old museum specimens. Proceedings of the National Academy of Sciences 108: 7466-7471. doi:10.1073/pnas.1013865108

YAMAMOTO, I., MATSUDA, K. & SATO, C. 1992. Heavy metals in the fish and shellfish from shore of Hokkaido. Journal of Japanese Society of Nutrition and Food Science 45: 186-197. doi:10.4327/jsnfs.45.186

YAMASHITA, Y., AMLUND, H., SUZUKI, T. ET AL. 2011. Selenoneine, total selenium, and total mercury content in the muscle of fishes. Fisheries Science 77: 679-686. doi:10.1007/s12562-011-0360-9

YODA, K., TOMITA, N., MIZUTANI, Y., NARITA, A. & NIIZUMA, Y. 2012. Spatio-temporal responses of Black-tailed Gulls to natural and anthropogenic food resources. Marine Ecology Progress Series 466: 249-259. doi:10.3354/meps09939

Search by author or title:

Browse previous volumes: