Menu

Volume 53, No. 2

Search by author or title:

Breeding phenology and reproductive success of larid species nesting in Cuba.


Authors

ANTONIO GARCIA-QUINTAS1,2*, DENNIS DENIS3, CHRISTOPHE BARBRAUD4, & SOPHIE LANCO1
1Institut de Recherche pour le Développement, Unité mixte de recherche - Marine Biodiversity, Exploitation and Conservation (MARBEC), Université de Montpellier, Ifremer, CNRS, IRD, France
2Centro de Investigaciones de Ecosistemas Costeros, Cuba *(agquintas86@gmail.com)
3Museo Nacional de Historia Natural, Habana Vieja, Cuba
4Centres d'Etudes Biologiques de Chizé (UMR7372), Centre National de la Recherche Scientifique - La Rochelle Université, 79360 Villiers en Bois, France

Citation

Garcia-Quintas, A., Denis, D., Barbraud, C., & Lanco, S. 2025. Breeding phenology and reproductive success of larid species nesting in Cuba.. Marine Ornithology 53: 243 - 249
http://doi.org/10.5038/2074-1235.53.2.1643

Received 08 February 2024, accepted 20 February 2025

Date Published: 2025/10/15
Date Online: 2025/08/26
Key words: breeding performance, gulls, phenological phases, seasonality, terns, tropical seabirds

Abstract

Breeding phenology is a life history trait that influences reproductive success and population dynamics, yet it remains poorly studied in tropical seabird species. The Caribbean constitutes a breeding hotspot for seabirds, although information about their phenology and reproductive success is limited. We characterized the breeding phenology and reproductive success of seven larid species during the 2021 breeding season on three cays in Cuba. To document breeding phenological phases, we conducted weekly surveys and used camera traps. We also recorded the number of nests, eggs and fledglings. Overall, the breeding phenology of the studied species was seasonal and relatively synchronous, occurring primarily from May to August. The phenological pattern exhibited in this larid community may reflect increased prey availability during the rainy season in Cuba. Additionally, denser vegetation cover—resulting from higher rainfall—may offer greater protection against predators, particularly because most of the species are summer residents. Reproductive success was high (≥ 50% per pair) for Laughing Gull Leucophaeus atricilla, Sooty Tern Onychoprion fuscatus, and Roseate Tern Sterna dougallii in all cays, while Bridled Tern O. anaethetus and Royal Tern Thalasseus maximus exhibited variable reproductive performance between cays. Sandwich Tern T. sandvicensis exhibited moderate reproductive success (40%-49%). Landscape features at nesting sites appeared to strongly affect the reproductive success of both Bridled Tern and Royal Tern.

References


Acosta, M., Mugica, L., Rodríguez-Ochoa, A., González, A., Aguilar, S., & Aguilar, K. (2022). Caracterización de la colonia reproductiva de aves marinas en Cayo Hijo de los Ballenatos, Archipiélago de los Canarreos, Cuba. Revista Cubana de Ciencias Biológicas, 10(1), 1-8.

Barrett, R. T., Camphuysen, K., Anker-Nilssen, T., Chardine, J. W., Furness, R. W., Garthe, S., Hüppop, O., Leopold, M. F., Montevecchi, W. A., & Veit, R. R. (2007). Diet studies of seabirds: A review and recommendations. ICES Journal of Marine Science, 64(9), 1675-1691. https://doi.org/10.1093/icesjms/fsm152

Black, C., Collen, B., Lunn, D., Filby, D., Winnard, S., & Hart, T. (2018). Time‐lapse cameras reveal latitude and season influence breeding phenology durations in penguins. Ecology and Evolution, 8(16), 8286-8296. https://doi.org/10.1002/ece3.4160

Bradley, P., & Norton, R. (2009). An inventory of breeding seabirds of the Caribbean. University Press of Florida.

Brandl, H. B., Griffith, S. C., & Schuett, W. (2019). Wild zebra finches choose neighbours for synchronized breeding. Animal Behaviour, 151, 21-28. https://doi.org/10.1016/j.anbehav.2019.03.002

Buckley, P. A., Buckley, F. G., & Mlodinow, S. G. (2021). Royal Tern (Thalasseus maximus), version 1.1. In S. M. Billerman (Ed.), Birds of the world. Cornell Lab of Ornithology. https://doi.org/10.2173/bow.royter1.01.1

Burger, J. (2020). Laughing Gull (Leucophaeus atricilla), version 1.0. In S. M. Billerman (Ed.), Birds of the world. Cornell Lab of Ornithology. https://doi.org/10.2173/bow.laugul.01

Burger, J., Safina, C., & Gochfeld, M. (1996). Temporal patterns in reproductive success in the endangered Roseate Tern (Sterna dougallii) nesting on Long Island, New York, and Bird Island, Massachusetts. The Auk, 113(1), 131-142. https://doi.org/10.2307/4088941

Byerly, P. A., Zaluski, S., Nellis, D., & Leberg, P. L. (2021). Effects of colony disturbance on reproductive success and nest defense behaviors in Caribbean Roseate Terns. Waterbirds, 44(4), 463-471. https://doi.org/10.1675/063.044.0407

Cram, D. L., Jungwirth, A., Spence-Jones, H., & Clutton-Brock, T. (2019). Reproductive conflict resolution in cooperative breeders. Behavioral Ecology, 30(6), 1743-1750. https://doi.org/10.1093/beheco/arz143

Dinsmore, J. J., & Schreiber, R. W. (1974). Breeding and annual cycle of Laughing Gulls in Tampa Bay, Florida. The Wilson Bulletin, 86(4), 419-427.

Dobson, F. S., Becker, P. H., Arnaud, C. M., Bouwhuis, S., & Charmantier, A. (2017). Plasticity results in delayed breeding in a long-distant migrant seabird. Ecology and Evolution, 7(9), 3100-3109. https://doi.org/10.1002/ece3.2777

Dunn, P. O., & Møller, A. P. (2014). Changes in breeding phenology and population size of birds. Journal of Animal Ecology, 83(3), 729-739. https://doi.org/10.1111/1365-2656.12162

Feare, C. J. (1976). The breeding of the Sooty Tern Sterna fuscata in the Seychelles and the effects of experimental removal of its eggs. Journal of Zoology, 179(3), 317-360. https://doi.org/10.1111/j.1469-7998.1976.tb02299.x

Garavanta, C. A. M., & Wooller, R. D. (2000). Courtship behaviour and breeding biology of Bridled Terns Sterna anaethetus on Penguin Island, Western Australia. Emu, 100(3), 169-174. https://doi.org/10.1071/MU9859

Garcia-Quintas, A., Bustamante, P., Barbraud, C., Lorrain, A., Denis, D., & Lanco, S. (2024). Plasticity and overlap of trophic niches in tropical breeding Laridae. Marine Ecology Progress Series, 742, 131-142. https://doi.org/10.3354/meps14653

Garcia-Quintas, A., Denis, D., Barbraud, C., & Lanco Bertrand, S. (2023). Breeding microhabitat patterns among sympatric tropical larids. Marine Ornithology, 51(1), 97-107. http://doi.org/10.5038/2074-1235.51.1.1516

Garrido, O. H., & Kirkconnell, A. (2011). Aves de Cuba. Comstock Publishing Associates.

Gochfeld, M., & Burger, J. (2020). Roseate Tern (Sterna dougallii), version 1.0. In S. M. Billerman (Ed.), Birds of the world. Cornell Lab of Ornithology. https://doi.org/10.2173/bow.roster.01

González-Leiva, L., & González-Pérez, D. (2021). Flora y vegetación en tres cayuelos del archipiélago de Sabana-Camagüey, Cuba. Acta Botánica Cubana, 220. https://revistasgeotech.com/index.php/abc/article/view/372

González-Medina, E., Castillo-Guerrero, J. A., & Mellink, E. (2009). Relación entre las características de los huevos y del sitio de anidación, con el éxito reproductivo de la Gaviota Reidora (Leucophaeus atricilla) en la isla El Rancho, Sinaloa durante la temporada 2007. Ornitologia Neotropical, 20, 553-564.

Hamer, K. C., Schreiber, E. A., & Burger, J. (2002). Breeding biology, life histories, and life history-environment interactions in seabirds. In E. A. Schreiber, E. A., & J. Burger (Eds.). Biology of Marine Birds. CRC Press. https://doi.org/10.1201/9781420036305

Haney, J. C., Lee, D. S., & Morris, R. D. (2020). Bridled Tern (Onychoprion anaethetus), version 1.0. In S. M. Billerman (Ed.), Birds of the world. Cornell Lab of Ornithology. https://doi.org/10.2173/bow.briter1.01

Hazen, E. L., Abrahms, B., Brodie, S., Carroll, G., Jacox, M. G., Savoca, M. S., Scales, K. L., Sydeman, W. J., & Bograd, S. J. (2019). Marine top predators as climate and ecosystem sentinels. Frontiers in Ecology and the Environment, 17(10), 565-574. https://doi.org/10.1002/fee.2125

Hindell, M. A., Bradshaw, C. J. A., Brook, B. W., Fordham, D. A., Kerry, K., Hull, C., & McMahon, C. R. (2012). Long-term breeding phenology shift in Royal Penguins: Phenology in Antarctic seabirds. Ecology and Evolution, 2(7), 1563-1571. https://doi.org/10.1002/ece3.281

Hulsman, K., & Langham, N. P. E. (1985). Breeding biology of the Bridled Tern Sterna anaethetus. Emu, 85(4), 240-249. https://doi.org/10.1071/MU9850240

Jiménez, A., Rodríguez, P., & Blanco, P. (2009). Cuba. In P. Bradley, & R. Norton (Eds.), An inventory of breeding seabirds of the Caribbean. University Press of Florida. https://doi.org/10.5860/choice.47-0865 

Lindén, A. (2018). Adaptive and nonadaptive changes in phenological synchrony. Proceedings of the National Academy of Sciences, 115(20), 5057-5059. https://doi.org/10.1073/pnas.1805698115

Lorentsen, S., Mattisson, J., & Christensen-Dalsgaard, S. (2019). Reproductive success in the European Shag is linked to annual variation in diet and foraging trip metrics. Marine Ecology Progress Series, 619, 137-147. https://doi.org/10.3354/meps12949

Moiron, M., Araya-Ajoy, Y. G., Teplitsky, C., Bouwhuis, S., & Charmantier, A. (2020). Understanding the social dynamics of breeding phenology: Indirect genetic effects and assortative mating in a long-distance migrant. The American Naturalist, 196(5), 566-576. https://doi.org/10.1086/711045

Muzaffar, S. B., Gubiani, R., & Benjamin, S. (2015). Nest location influences hatching success in the Socotra Cormorant (Phalacrocorax nigrogularis) on Siniya Island, United Arab Emirates. Wildlife Research, 42(1), 13-18. https://doi.org/10.1071/WR14225

Owen, T. M., & Pierce, A. R. (2014). Productivity and chick growth rates of Royal Tern (Thalasseus maximus) and Sandwich Tern (Thalasseus sandvicensis) on the Isles Dernieres Barrier Island Refuge, Louisiana. Waterbirds, 37(3), 245-253. https://doi.org/10.1675/063.037.0303

Pulvirenti, J., Reina, R. D., & Chiaradia, A. (2023). Exploring subcolony differences in foraging and reproductive success: The influence of environmental conditions on a central place foraging seabird. Royal Society Open Science, 10(6), 220362. https://doi.org/10.1098/rsos.220362

Quintero, I., González-Caro, S., Zalamea, P.-C., & Cadena, C. D. (2014). Asynchrony of seasons: Genetic differentiation associated with geographic variation in climatic seasonality and reproductive phenology. The American Naturalist, 184(3), 352-363. https://doi.org/10.1086/677261

R Core Team (2021). R (version 4.1.1) [Computer software]. The R Foundation for Statistical Computing.


Schreiber, E. A., Feare, C. J., Harrington, B. A., Murray Jr., B. G., Robertson Jr., W. B., Robertson, M. J., & Woolfenden, G. E. (2020). Sooty Tern (Onychoprion fuscatus), version 1.0. In S. M. Billerman (Ed.), Birds of the world. Cornell Lab of Ornithology. https://doi.org/10.2173/bow.sooter1.01

Shealer, D., Liechty, J. S., Pierce, A. R., Pyle, P., & Patten, M. A. (2020). Sandwich Tern (Thalasseus sandvicensis), version 1.0. In S. M. Billerman (Ed.), Birds of the world. Cornell Lab of Ornithology. https://doi.org/10.2173/bow.santer1.01

Surman, C., Nicholson, L., & Santora, J. (2012). Effects of climate variability on breeding phenology and performance of tropical seabirds in the eastern Indian Ocean. Marine Ecology Progress Series, 454, 147-157. https://doi.org/10.3354/meps09729

Sydeman, W. J., & Emslie, S. D. (1992). Effects of parental age on hatching asynchrony, egg size and third-chick disadvantage in Western Gulls. The Auk, 109(2), 242-248. https://doi.org/10.2307/4088192

Tayefeh, F. H., Zakaria, M., Ghayoumi, R., & Amini, H. (2017). Breeding biology of the Bridled Tern Sterna anaethetus on Nakhilu Island, Persian Gulf, Iran. Podoces, 12(1), 1-12.

Villard, P., & Bretagnolle, V. (2010). Breeding biology of the Bridled Tern (Sterna anaethetus) in New Caledonia. Waterbirds, 33(2), 246-250. https://doi.org/10.1675/063.033.0214

Search by author or title:

Browse previous volumes: