Menu

Volume 53, No. 2

Search by author or title:

What to eat when far from home? A vagrant seabird selects novel but analogous prey.


Authors

WILLIAM L. KENNERLEY1, GEMMA V. CLUCAS2, DONALD E. LYONS3,4, & KEENAN C. YAKOLA3
1Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Hatfield Marine Science Center, Newport, Oregon, 97365, USA (william.kennerley@oregonstate.edu)
2Cornell Lab of Ornithology, Cornell University, Ithaca, New York, 14850, USA
3Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Corvallis, Oregon, 97331, USA
4National Audubon Society Seabird Institute, Bremen, Maine, 04551, USA

Citation

Kennerley, W. L., Clucas, G. V., Lyons, D. E., & Yakola, K. C. 2025. What to eat when far from home? A vagrant seabird selects novel but analogous prey.. Marine Ornithology 53: 251 - 256
http://doi.org/10.5038/2074-1235.53.2.1644

Received 19 November 2024, accepted 07 February 2025

Date Published: 2025/10/15
Date Online: 2025/08/26
Key words: dietary plasticity, DNA metabarcoding, Gulf of Maine, seabird diet, vagrancy

Abstract

Vagrancy in birds is an important mechanism contributing to range expansion and the establishment of new breeding populations. However, research on the ecology of vagrant individuals has been limited. From 2005 to 2021, a Red-billed Tropicbird Phaethon aethereus, far outside its usual range, was a summer resident at Seal Island, Maine, USA. In 2020 and 2021, we collected fecal samples from this individual and identified prey types consumed via DNA metabarcoding techniques, using 12S and 18S genes. We identified six fish species in the Red-billed Tropicbird fecal DNA samples, with Atlantic Saury Scomberesox saurus and Atlantic Mackerel Scomber scombrus contributing ~75% of DNA reads. To our knowledge, these two species have not previously been documented in the diet of Red-billed Tropicbirds, yet they were important in both years despite contrasting environmental conditions. Although it is quite possible that this vagrant individual had not encountered either saury or mackerel prior to its extralimital dispersal to the Gulf of Maine, these species share morphological and functional traits with known tropicbird prey elsewhere. Thus, despite occurring > 2,400 km from known breeding sites, this Red-billed Tropicbird was capable of selecting suitable prey in a variable environment.

References


Balch, W. M., Drapeau, D. T., Bowler, B. C., Record, N. R., Bates, N. R., Pinkham, S., Garley, R., & Mitchell, C. (2022). Changing hydrographic, biogeochemical, and acidification properties in the Gulf of Maine as measured by the Gulf of Maine North Atlantic time series, GNATS, between 1998 and 2018. Journal of Geophysical Research: Biogeosciences, 127(6), e2022JG006790. https://doi.org/10.1029/2022JG006790

Barbet-Massin, M., Thuiller, W., & Jiguet, F. (2012). The fate of European breeding birds under climate, land-use and dispersal scenarios. Global Change Biology, 18(3), 881-890. https://doi.org/10.1111/j.1365-2486.2011.02552.x

Boeken, M. (2016). Breeding success of red-billed tropicbirds Phaethon aethereus on the Caribbean Island of Saba. Ardea, 104(3), 263-271. https://doi.org/10.5253/arde.v104i3.a8

Bolyen, E., Rideout, J. R., Dillon, M. R., Bokulich, N. A., Abnet, C. C., Al-Ghalith, G. A., Alexander, H., Alm, E. J., Arumugam, M., Asnicar, F., Bai, Y., Bisanz, J. E., Bittinger, K., Brejnrod, A., Brislawn, C. J., Brown, C. T., Callahan, B. J., Caraballo-Rodríguez, A. M., Chase, J.,…Caporaso, J. G. (2019). Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology, 37(8), 852-857. https://doi.org/10.1038/s41587-019-0209-9

Buxton, R. T., Jones, C., Moller, H., & Towns, D. R. (2014). Drivers of seabird population recovery on New Zealand Islands after predator eradication. Conservation Biology, 28(2), 333-344. https://doi.org/10.1111/cobi.12228

Castillo-Guerrero, J. A., Guevara-Medina, M. A., & Mellink, E. (2011). Breeding ecology of the Red-billed Tropicbird Phaethon aethereus under contrasting environmental conditions in the Gulf of California. Ardea, 99(1), 61-71. https://doi.org/10.5253/078.099.0108

Clucas, G. V, Stillman, A., & Craig, E. C. (2024). From presence/absence to reliable prey proportions: A field test of dietary DNA for characterizing seabird diets. BioRxiv, 2024.03.22.586275. https://doi.org/10.1101/2024.03.22.586275

Collette, B. B., & Klein-MacPhee, G. (Eds.). (2002). Bigelow and Schroeder's fishes of the Gulf of Maine (3rd ed.). Smithsonian Institution Press. https://doi.org/10.22621/cfn.v117i2.711

Davis, R. A., & Watson, D. M. (2018). Vagrants as vanguards of range shifts in a dynamic world. Biological Conservation, 224, 238-241. https://doi.org/10.1016/j.biocon.2018.06.006

Deagle, B. E., Chiaradia, A., McInnes, J., & Jarman, S. N. (2010). Pyrosequencing faecal DNA to determine diet of little penguins: Is what goes in what comes out? Conservation Genetics, 11(5), 2039-2048. https://doi.org/10.1007/s10592-010-0096-6

Fayet, A. L., Clucas, G. V., Anker-Nilssen, T., Syposz, M., & Hansen, E. S. (2021). Local prey shortages drive foraging costs and breeding success in a declining seabird, the Atlantic puffin. Journal of Animal Ecology, 90(5), 1152-1164. https://doi.org/10.1111/1365-2656.13442

Fjeldsa, J., Christidis, L., & Ericson, P. G. (2020). The largest avian radiation: The evolution of perching birds, or the order passeriformes (1st ed.). Lynx Editions. https://doi.org/10.1086/717382

Froese, R., & Pauly, D. (2023, February 23). FishBase. https://www.fishbase.org

Furness, B. L., Laugksch, R. C., & Duffy, D. C. (1984). Cephalopod beaks and studies of seabird diets. The Auk, 101(3), 619-620. https://digitalcommons.usf.edu/auk/vol101/iss3/30

Grinnell, J. (1922). The Role of the “Accidental.” The Auk, 39(3), 373-380. https://digitalcommons.usf.edu/auk/vol39/iss3/7

Gulf of Maine Research Institute. (2021, October 26). Gulf of Maine warming update: Summer 2021. Gulf of Maine Research Institute. https://www.gmri.org/stories/gulf-of-maine-warming-update-summer-2021/

Henry, R. W., Shaffer, S. A., Antolos, M., Félix-Lizárraga, M., Foley, D. G., Hazen, E. L., Tremblay, Y., Costa, D. P., Tershy, B. R., & Croll, D. A. (2021). Successful long-distance breeding range expansion of a top marine predator. Frontiers in Ecology and Evolution, 9, 620103. https://doi.org/10.3389/fevo.2021.620103

Kennerley, W. L., Clucas, G. V., & Lyons, D. E. (2024). Multiple methods of diet assessment reveal differences in Atlantic puffin diet between ages, breeding stages, and years. Frontiers in Marine Science, 11. https://doi.org/10.3389/fmars.2024.1410805

Kress, S. W., Shannon, P., & O'Neal, C. (2016). Recent changes in the diet and survival of Atlantic puffin chicks in the face of climate change and commercial fishing in midcoast Maine, USA. FACETS, 1(1), 27-43. https://doi.org/10.1139/facets-2015-0009

Lee, D. S., & Walsh-McGehee, M. (2000). Population estimates, conservation concerns, and management of Tropicbirds in the Western Atlantic. Caribbean Journal of Science, 36(3-4), 267-279.

Lees, A. C., & Gilroy, J. J. (2014). Vagrancy fails to predict colonization of oceanic islands. Global Ecology and Biogeography, 23(4), 405-413. https://doi.org/10.1111/geb.12129

Madden, H., Satgé, Y., Wilkinson, B., & Jodice, P. G. R. (2022). Foraging ecology of Red-billed Tropicbird Phaethon aethereus in the Caribbean during early chick rearing revealed by GPS tracking. Marine Ornithology, 50(2), 165-175. http://doi.org/10.5038/2074-1235.50.2.1486

Maine Bird Records Committee. (2021). Red-billed Tropicbird (Phaethon aethereus). https://sites.google.com/site/mainebirdrecordscommittee/official-list-of-maine-birds/red-billed-tropicbird

McInnes, J. C., Alderman, R., Lea, M. A., Raymond, B., Deagle, B. E., Phillips, R. A., Stanworth, A., Thompson, D. R., Catry, P., Weimerskirch, H., Suazo, C. G., Gras, M., & Jarman, S. N. (2017). High occurrence of jellyfish predation by black-browed and Campbell albatross identified by DNA metabarcoding. Molecular Ecology, 26(18), 4831-4845. https://doi.org/10.1111/mec.14245

Miya, M., Sato, Y., Fukunaga, T., Sado, T., Poulsen, J. Y., Sato, K., Minamoto, T., Yamamoto, S., Yamanaka, H., Araki, H., Kondoh, M., & Iwasaki, W. (2015). MiFish, set of universal PCR primers for metabarcoding DNA from fishes. Royal Society Open Science, 2, 150088. https://doi.org/10.1098/rsos.150088

Montevecchi, W. A. (2007). Binary dietary responses of northern gannets Sula bassana indicate changing food web and oceanographic conditions. Marine Ecology Progress Series, 352, 213-220. https://doi.org/10.3354/meps07075

Oro, D., Martínez-Abraín, A., Villuendas, E., Sarzo, B., Mínguez, E., Carda, J., & Genovart, M. (2011). Lessons from a failed translocation program with a seabird species: Determinants of success and conservation value. Biological Conservation, 144(2), 851-858. https://doi.org/10.1016/j.biocon.2010.11.018

Orta, J., Jutglar, F., Garcia, E., & Kirwan, G. M. (2020). Red-billed Tropicbird (Phaethon aethereus), version 1.0. In J. del Hoyo, A. Elliott, J. Sargatal, D. Christie, & E. de Juana (Eds.), Birds of the world. Cornell Lab of Ornithology. https://doi.org/10.2173/bow.rebtro.01

Pandolfi, J. M., Staples, T. L., & Kiessling, W. (2020). Increased extinction in the emergence of novel ecological communities. Science, 370, 220-222. https://doi.org/10.5281/zenodo.4031861

Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., & Glöckner, F. O. (2013). The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Research, 41(D1), D590-D596. https://doi.org/10.1093/nar/gks1219

Radlinski, M. K., Sundermeyer, M. A., Bisagni, J. J., & Cadrin, S. X. (2013). Spatial and temporal distribution of Atlantic mackerel (Scomber scombrus) along the northeast coast of the United States, 1985-1999. ICES Journal of Marine Science, 70(6), 1151-1161. https://doi.org/10.1093/icesjms/fst029

Robeson, M. S., O'Rourke, D. R., Kaehler, B. D., Ziemski, M., Dillon, M. R., Foster, J. T., & Bokulich, N. A. (2021). RESCRIPt: Reproducible sequence taxonomy reference database management. PLoS Computational Biology, 17(11). https://doi.org/10.1371/journal.pcbi.1009581

Rose, G. A. (2005). On distributional responses of North Atlantic fish to climate change. ICES Journal of Marine Science, 62(7), 1360-1374. https://doi.org/10.1016/j.icesjms.2005.05.007

Spear, L. B., & Ainley, D. G. (2005). At-sea behaviour and habitat use by tropicbirds in the eastern Pacific. Ibis, 147(2), 391-407. https://doi.org/10.1111/j.1474-919x.2005.00418.x

Spitz, J., Ridoux, V., & Brind'Amour, A. (2014). Let's go beyond taxonomy in diet description: Testing a trait-based approach to prey-predator relationships. Journal of Animal Ecology, 83(5), 1137-1148. https://doi.org/10.1111/1365-2656.12218

Storey, A. S., & Lien, J. (1985). Development of the First North American colony of Manx Shearwaters. The Auk, 102(2), 395-401. https://doi.org/10.2307/4086788

Thomas, C. D. (2010). Climate, climate change and range boundaries. Diversity and Distributions, 16(3), 488-495. https://doi.org/10.1111/j.1472-4642.2010.00642.x

Veit, R. R. (1988). Why don't Red-billed Tropicbirds nest on Martha's Vineyard? Bird Observer, 16(1), 11-16.

Veit, R. R. (1989). Vagrant birds: Passive or active dispersal? Bird Observer, 17(1), 25-30. https://digitalcommons.usf.edu/bird_observer/vol17/iss1/7

Veit, R. R. (2000). Vagrants as the expanding fringe of a growing population. The Auk, 117(1), 242-246. https://doi.org/10.1093/auk/117.1.242

Veit, R. R., Velarde, E., Horn, M. H., & Manne, L. L. (2021). Population growth and long-distance vagrancy leads to colonization of Europe by Elegant Terns Thalasseus elegans. Frontiers in Ecology and Evolution, 9. https://doi.org/10.3389/fevo.2021.725614

Yakola, K., Jordaan, A., Kress, S., Shannon, P., & Staudinger, M. D. (2022). Interspecific and local variation in tern chick diets across nesting colonies in the Gulf of Maine. Waterbirds, 44(4), 397-414. https://doi.org/10.1675/063.044.0402

Zawadzki, L. C., Veit, R. R., & Manne, L. L. (2019). The influence of population growth and wind on vagrancy in a North American passerine. Ardea, 107(2), 131-147. https://doi.org/10.5253/arde.v107i2.a2

Search by author or title:

Browse previous volumes: