Menu

Volume 53, No. 2

Search by author or title:

Behavioral response of Atlantic Puffins Fratercula arctica to marine heatwaves in the Gulf of Maine, USA: A webcam study.


Authors

JULIE WALLACE1, KEENAN YAKOLA2,3, STEPHEN W. KRESS2,4, & DONALD E. LYONS2,3
1J. A. Wallace, Ontario, Canada (julie.wallace@ieee.org)
2National Audubon Society Seabird Institute, Bremen, Maine, USA
3Oregon State University, Oregon, USA
4Cornell Laboratory of Ornithology, Ithaca, New York, USA

Citation

Wallace, J., Yakola, K., Kress, S. W., & Lyons, D. E. (2025). Behavioral response of Atlantic Puffins Fratercula arctica to marine heatwaves in the Gulf of Maine, USA: A webcam study. Marine Ornithology 53(2), 285-297
http://doi.org/10.5038/2074-1235.53.2.1655

Received 16 January 2025, accepted 30 May 2025

Date Published: 2025/10/15
Date Online: 2025/10/07
Key words: Atlantic Puffins, marine heatwaves, parenting roles, plasticity, chick behavior

Abstract

We observed a family of Atlantic Puffins Fratercula arctica in a burrow on Seal Island National Wildlife Refuge in the Gulf of Maine, USA, during the 2017-2020 and 2022 breeding seasons. The burrow was equipped with a high-resolution web camera, which allowed 24-hour daily observations. We investigated the impacts of elevated sea surface temperature (SST) and marine heatwaves (MHWs), which are linked to low food availability, on chick provisioning and burrow attendance. In 2017, 2019, 2020, and 2022, the female was the primary provisioner, providing twice as many feedings as the male, and the male was the primary burrow guardian, spending twice as much time at the burrow as the female. Using generalized linear models to estimate relationships between SST, feeding rates, and burrow attendance, we found that higher SST was associated with lower feeding rates and burrow attendance. These impacts were amplified in 2018 amid a prolonged MHW. The puffins struggled to find food consistently, leading to lower provisioning rates, smaller bill-loads of mostly low-quality prey, and a visibly under-nourished chick. This prompted the male to trade his burrow-guarding role for additional chick provisioning, and the chick fledged after 69 days, 28 days longer than is typical. This study is the first to demonstrate that Atlantic Puffins can modify their usual parenting roles in response to prey availability, deferring migration and extending chick-rearing by as many as four weeks. We also observed modification in chick behavior amid a high-intensity MHW in 2022, during which the chick was frequently provisioned with American Butterfish Peprilus triacanthus, a deep-bodied fish that is not easily swallowed. The chick consistently consumed butterfish piecemeal, pulling off and swallowing small pieces, until the remaining portion was small enough to be swallowed. This was an effective strategy and a behavior that has not previously been reported.

References


Adams, C. F. (2022). Update on the spatial distribution of butterfish, 1982-2019 (NFSC Reference Document 22-04). US Department of Commerce, Northeast Fisheries Science Center. https://repository.library.noaa.gov/view/noaa/37526

Ainley, D. G., & Boekelheide, R. J. (Eds.). (1990). Seabirds of the Farallon Islands: Ecology, dynamics, and structure of an upwelling-system community. Stanford University Press.

Akaike, H. (1998). Information theory and an extension of the maximum likelihood principle. In E. Parzen, K. Tanabe, & G. Kitagawa (Eds.), Selected papers of Hirotugu Akaike (pp. 199-213). Springer. https://doi.org/10.1007/978-1-4612-1694-0_15

Anker-Nilssen, T., Kadin, M., & Hilde, C. H. (2024). Stay or go? Changing breeding conditions affect sexual difference in colony attendance strategies of Atlantic Puffins Fratercula arctica. Ecology and Evolution, 14(7), Article e11681. https://doi.org/10.1002/ece3.11681

Arteaga, L. A., & Rousseaux, C. S. (2023). Impact of Pacific Ocean heatwaves on phytoplankton community composition. Communications Biology, 6, Article 263. https://doi.org/10.1038/s42003-023-04645-0

Balch, W. M., Drapeau, D. T., Bowler, B. C., Record, N. R., Bates, N. R., Pinkham, S., Garley, R., & Mitchell, C. (2022). Changing hydrographic, biogeochemical, and acidification properties in the Gulf of Maine as measured by the Gulf of Maine North Atlantic Time Series, GNATS, between 1998 and 2018. Journal of Geophysical Research: Biogeosciences, 127(6), Article e2022JG006790. https://doi.org/10.1029/2022JG006790

Budge, S. M., Iverson, S. J., Bowen, W. D., & Ackman, R. G. (2002). Among- and within-species variability in fatty acid signatures of marine fish and invertebrates on the Scotian Shelf, Georges Bank, and southern Gulf of St. Lawrence. Canadian Journal of Fisheries and Aquatic Sciences, 59(5), 886-898. https://doi.org/10.1139/f02-062

Creelman, E., & Storey, A. E. (1991). Sex differences in reproductive behavior of Atlantic Puffins. The Condor, 93(2), 390-398. https://doi.org/10.2307/1368955

Cushing, D. A., Kuletz, K. J., Sousa, L., Day, R. H., Danielson, S. L., Labunski, E. A., & Hopcroft, R. R. (2024). Differential response of seabird species to warm- and cold-water events in a heterogeneous cross-shelf environment in the Gulf of Alaska. Marine Ecology Progress Series, 737, 31-58. https://doi.org/10.3354/meps14239

Eilertsen, K., Barrett, R. T., & Torstein, P. (2008). Diet, growth and early survival of Atlantic Puffin (Fratercula arctica) chicks in North Norway. Waterbirds, 31(1), 107-114. https://doi.org/10.1675/1524-4695(2008)31[107:DGAESO]2.0.CO;2

Environmental Systems Research Institute. (2023). ArcGIS Desktop (Release 10.7) [Computer software]. ESRI. https://www.esri.com/en-us/home

Fayet, A. L., Clucas, G. V., Anker‐Nilssen, T., Syposz, M., & Hansen, E. S. (2021). Local prey shortages drive foraging costs and breeding success in a declining seabird, the Atlantic Puffin. Journal of Animal Ecology, 90(5), 1152-1164. https://doi.org/10.1111/1365-2656.13442

Fitzsimmons, M. G. (2018). Sex-specific behavioural and physiological responses of breeding Atlantic Puffins Fratercula arctica and their chicks to fluctuating prey abundance [Doctoral dissertation, Memorial University of Newfoundland]. https://research.library.mun.ca/13632/

Gomes, D. G. E., Ruzicka, J. J., Crozier, L. G., Huff, D. D., Brodeur, R. D., & Stewart, J. D. (2024). Marine heatwaves disrupt ecosystem structure and function via altered food webs and energy flux. Nature Communications, 15, Article 1988. https://doi.org/10.1038/s41467-024-46263-2

Gulf of Maine Research Institute. (2024). Gulf of Maine warming update: Summer 2024. GMRI. https://gmri.org/stories/gulf-of-maine-warming-update-summer-2024/

Gulf of Maine Seabird Working Group. (2024). Meeting minutes. GOMSWG. http://gomswg.org/minutes.html

Grilli, M. G., Pari, M., & Ibañez, A. (2018). Poor body conditions during the breeding period in a seabird population with low breeding success. Marine Biology, 165(9), Article 142. https://doi.org/10.1007/s00227-018-3401-4

Harris, M. P., Bogdanova, M. I., Daunt, F., & Wanless, S. (2012). Using GPS technology to assess feeding areas of Atlantic Puffins Fratercula arctica. Ringing & Migration, 27(1), 43-49. https://doi.org/10.1080/03078698.2012.691247

Harris, M. P., & Wanless, S. (2011). The Puffin (1st ed.). Bloomsbury Publishing.

Hobday, A. J., Alexander, L. V., Perkins, S. E., Smale, D. A., Straub, S. C., Oliver, E. C. J., Benthuysen, J. A., Burrows, M. T., Donat, M. G., Feng, M., Holbrook, N. J., Moore, P. J., Scannell, H. A., Sen Gupta, A., & Wernberg, T. (2016). A hierarchical approach to defining marine heatwaves. Progress in Oceanography, 141, 227-238. https://doi.org/10.1016/j.pocean.2015.12.014

Hobday, A. J., Oliver, E. C. J., Sen Gupta, A., Benthuysen, J. A., Burrows, M. T., Donat, M. G., Holbrook, N. J., Moore, P. J., Thomsen, M. S., Wernberg, T., & Smale, D. A. (2018). Categorizing and naming marine heatwaves. Oceanography, 31(2), 162-173. https://doi.org/10.5670/oceanog.2018.205

Huang, B., Liu, C., Banzon, V. F., Freeman, E., Graham, G., Hankins, W., Smith, T. M., & Zhang, H.-M. (2020). NOAA 0.25-degree daily Optimum Interpolation Sea Surface Temperature (OISST), Version 2.1 [Data set]. National Centers for Environmental Information, National Oceanic and Atmospheric Administration, U.S. Department of Commerce. https://doi.org/10.25921/RE9P-PT57

Jackson, D. Z. (2024, August 17). Seal Island sees record number of breeding puffins. The Maine Monitor. https://themainemonitor.org/seal-island-breeding-puffins/

Kleisner, K. M., Fogarty, M. J., McGee, S., Hare, J. A., Moret, S., Perretti, C. T., & Saba, V. S. (2017). Marine species distribution shifts on the U.S. Northeast Continental Shelf under continued ocean warming. Progress in Oceanography, 153, 24-36. https://doi.org/10.1016/j.pocean.2017.04.001

Kress, S. W., Shannon, P., & O'Neal, C. (2016). Recent changes in the diet and survival of Atlantic Puffin chicks in the face of climate change and commercial fishing in midcoast Maine, USA. FACETS, 1(1), 27-43. https://doi.org/10.1139/facets-2015-0009

Le Nohaïc, M., Ross, C. L., Cornwall, C. E., Comeau, S., Lowe, R., McCulloch, M. T., & Schoepf, V. (2017). Marine heatwave causes unprecedented regional mass bleaching of thermally resistant corals in northwestern Australia. Scientific Reports, 7, Article 14999. https://doi.org/10.1038/s41598-017-14794-y

Lescure, L., Gulka, J., & Davoren, G. K. (2023). Increased foraging effort and reduced chick condition of Razorbills under lower prey biomass in coastal Newfoundland, Canada. Marine Ecology Progress Series, 709, 109-123. https://doi.org/10.3354/meps14286

Lonhart, S. I., Jeppesen, R., Beas-Luna, R., Crooks, J. A., & Lorda, J. (2019). Shifts in the distribution and abundance of coastal marine species along the eastern Pacific Ocean during marine heatwaves from 2013 to 2018. Marine Biodiversity Records, 12, Article 13. https://doi.org/10.1186/s41200-019-0171-8

Marin, M., Feng, M., Phillips, H. E., & Bindoff, N. L. (2021). A global, multiproduct analysis of coastal marine heatwaves: Distribution, characteristics, and long-term trends. Journal of Geophysical Research: Oceans, 126(2), Article e2020JC016708. https://doi.org/10.1029/2020JC016708

Merchant, C. J., Allan, R. P., & Embury, O. (2025). Quantifying the acceleration of multidecadal global sea surface warming driven by Earth's energy imbalance. Environmental Research Letters, 20(2), Article 024037. https://doi.org/10.1088/1748-9326/adaa8a

Mills, K. E., Kemberling, A., Kerr, L. A., Lucey, S. M., McBride, R. S., Nye, J. A., Pershing, A. J., Barajas, M., & Lovas, C. S. (2024). Multispecies population-scale emergence of climate change signals in an ocean warming hotspot. ICES Journal of Marine Science, 81(2), 375-389. https://doi.org/10.1093/icesjms/fsad208

Mills, K. E., Pershing, A. J., Brown, C. J., Chen, Y., Chiang, F.-S., Holland, D. S., Lehuta, S., Nye, J. A., Sun, J. C., Thomas, A. C., & Wahle, R. A. (2013). Fisheries management in a changing climate: Lessons from the 2012 ocean heat wave in the Northwest Atlantic. Oceanography, 26(2), 191-195. https://doi.org/10.5670/oceanog.2013.27

Nye, J. A., Joyce, T. M., Kwon, Y.-O., & Link, J. S. (2011). Silver hake tracks changes in Northwest Atlantic circulation. Nature Communications, 2, Article 412. https://doi.org/10.1038/ncomms1420

Nye, J. A., Link, J. S., Hare, J. A., & Overholtz, W. J. (2009). Changing spatial distribution of fish stocks in relation to climate and population size on the Northeast United States continental shelf. Marine Ecology Progress Series, 393, 111-129. https://doi.org/10.3354/meps08220

Orians, G. H., & Pearson, N. E. (1979). On the theory of central place foraging. In D. J. Horn, R. D. Mitchell, & G. R. Stairs (Eds.), Analysis of Ecological Systems (pp. 155-177). Ohio State University Press.

Osborne, O. E., O'Hara, P. D., Whelan, S., Zandbergen, P., Hatch, S. A., & Elliott, K. H. (2020). Breeding seabirds increase foraging range in response to an extreme marine heatwave. Marine Ecology Progress Series, 646, 161-173. https://doi.org/10.3354/meps13392

Pershing, A. J., Alexander, M. A., Hernandez, C. M., Kerr, L. A., Le Bris, A., Mills, K. E., Nye, J. A., Record, N. R., Scannell, H. A., Scott, J. D., Sherwood, G. D., & Thomas, A. C. (2015). Slow adaptation in the face of rapid warming leads to collapse of the Gulf of Maine cod fishery. Science, 350(6262), 809-812. https://doi.org/10.1126/science.aac9819

Piatt, J. F., Arimitsu, M. L., Thompson, S. A., Suryan, R., Wilson, R. P., Elliott, K. H., & Sydeman, W. J. (2024). Mechanisms by which marine heatwaves affect seabirds. Marine Ecology Progress Series, 737, 1-8. https://doi.org/10.3354/meps14625

Piatt, J. F., Parrish, J. K., Renner, H. M., Schoen, S. K., Jones, T. T., Arimitsu, M. L., Kuletz, K. J., Bodenstein, B., García-Reyes, M., Duerr, R. S., Corcoran, R. M., Kaler, R. S. A., McChesney, G. J., Golightly, R. T., Coletti, H. A., Suryan, R. M., Burgess, H. K., Lindsey, J., Lindquist, K., … Sydeman, W. J. (2020). Extreme mortality and reproductive failure of Common Murres resulting from the northeast Pacific marine heatwave of 2014-2016. PLoS One, 15(1), Article e0226087. https://doi.org/10.1371/journal.pone.0226087

R Core Team. (2024). R: A language and environment for statistical computing (Version 4.4.1). The R Foundation for Statistical Computing. https://www.r-project.org/

Ramírez, F., Afán, I., Tavecchia, G., Catalán, I. A., Oro, D., & Sanz-Aguilar, A. (2016). Oceanographic drivers and mistiming processes shape breeding success in a seabird. Proceedings of the Royal Society B, 283(1826), Article 20152287. https://doi.org/10.1098/rspb.2015.2287

Record, N. R., Pershing, A. J., & Rasher, D. B. (2024). Early warning of a cold wave in the Gulf of Maine. Oceanography, 37(3), 6-9. https://doi.org/10.5670/oceanog.2024.506

Schlegel, R. W., & Smit, A. J. (2018). heatwaveR: A central algorithm for the detection of heatwaves and cold-spells. Journal of Open Source Software, 3(27), Article 821. https://doi.org/10.21105/joss.00821

Schrimpf, M. B., Parrish, J. K., & Pearson, S. F. (2012). Trade-offs in prey quality and quantity revealed through the behavioral compensation of breeding seabirds. Marine Ecology Progress Series, 460, 247-259. https://www.jstor.org/stable/24876376

Scopel, L., Diamond, A., Kress, S., & Shannon, P. (2019). Varied breeding responses of seabirds to a regime shift in prey base in the Gulf of Maine. Marine Ecology Progress Series, 626, 177-196. https://doi.org/10.3354/meps13048

Seidov, D., Mishonov, A., & Parsons, R. (2021). Recent warming and decadal variability of Gulf of Maine and Slope Water. Limnology and Oceanography, 66(9), 3472-3488. https://doi.org/10.1002/lno.11892

Sen Gupta, A., Thomsen, M., Benthuysen, J. A., Hobday, A. J., Oliver, E., Alexander, L. V., Burrows, M. T., Donat, M. G., Feng, M., Holbrook, N. J., Perkins-Kirkpatrick, S., Moore, P. J., Rodrigues, R. R., Scannell, H. A., Taschetto, A. S., Ummenhofer, C. C., Wernberg, T., & Smale, D. A. (2020). Drivers and impacts of the most extreme marine heatwave events. Scientific Reports, 10, Article 19359. https://doi.org/10.1038/s41598-020-75445-3

Smale, D. A., Wernberg, T., Oliver, E. C. J., Thomsen, M., Harvey, B. P., Straub, S. C., Burrows, M. T., Alexander, L. V., Benthuysen, J. A., Donat, M. G., Feng, M., Hobday, A. J., Holbrook, N. J., Perkins-Kirkpatrick, S. E., Scannell, H. A., Sen Gupta, A., Payne, B. L., & Moore, P. J. (2019). Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nature Climate Change, 9, 306-312. https://doi.org/10.1038/s41558-019-0412-1

Smith, O. A., & Craig, E. C. (2023). Effects of Atlantic Butterfish (Peprilus triacanthus) in diets of Common Terns (Sterna hirundo): A case study of climate change effects in the Gulf of Maine. Avian Conservation and Ecology, 18(2), Article 1. https://doi.org/10.5751/ACE-02440-180201

Staudinger, M. D., Mills, K. E., Stamieszkin, K., Record, N. R., Hudak, C. A., Allyn, A., Diamond, A., Friedland, K. D., Golet, W., Henderson, M. E., Hernandez, C. M., Huntington, T. G., Ji, R., Johnson, C. L., Johnson, D. S., Jordaan, A., Kocik, J., Li, Y., Liebman, M., … Yakola, K. (2019). It's about time: A synthesis of changing phenology in the Gulf of Maine ecosystem. Fisheries Oceanography, 28(5), 532-566. https://doi.org/10.1111/fog.12429

Symons, S. C., & Diamond, A. W. (2022). Resource partitioning in Atlantic Puffins and Razorbills facing declining food: An analysis of feeding areas and dive behaviour in relation to diet. Marine Ecology Progress Series, 699, 153-165. https://doi.org/10.3354/meps14172

Venegas, R. M., Acevedo, J., & Treml, E. A. (2023). Three decades of ocean warming impacts on marine ecosystems: A review and perspective. Deep Sea Research Part II, 212, Article 105318. https://doi.org/10.1016/j.dsr2.2023.105318

Wernham, C. V. (1993). Ecology and energetics of breeding Puffins (Fratercula arctica): Variation in individual reproductive effort and success [Doctoral dissertation, University of Stirling]. Stirling Online Research Repository. http://hdl.handle.net/1893/29385

Woehler, E. J., & Hobday, A. J. (2024). Impacts of marine heatwaves may be mediated by seabird life history strategies. Marine Ecology Progress Series, 737, 9-23. https://doi.org/10.3354/meps14333

Zeileis, A. (2006). Object-oriented computation of sandwich estimators. Journal of Statistical Software, 16(9), 1-16. https://doi.org/10.18637/jss.v016.i09

Search by author or title:

Browse previous volumes: