Volume 45, No. 2

Volumes > 37 (2010-->) Volumes 28-37 (2000-09) Volumes 18-27 (1990-99) Volumes 5-17 (1978-89)
a.k.a. Cormorant

Quick Search by author or article title:

Lead and cadmium levels in Galapagos Penguin Spheniscus mendiculus, Flightless Cormorant Phalacrocorax harrisi, and Waved Albatross Phoebastria irrorata



1Department of Sciences, Charles Darwin Foundation, Puerto Ayora, Galápagos, Ecuador (gustavo.jimenez@fcdarwin.org.ec)
2Escuela de Medicina Veterinaria, Universidad San Francisco de Quito, Quito, Ecuador
3Departamento de Ingeniería Química, Colegio de Ciencias e Ingenierías - El Politécnico, Universidad San Francisco de Quito, Quito, Ecuador
4Instituto de Simulación Computacional, Colegio de Ciencias e Ingenierías - El Politécnico, Universidad San Francisco de Quito, Quito, Ecuador
5Galápagos National Park Directorate, Puerto Ayora, Galápagos, Ecuador

Received 5 December 2016, accepted 17 May 2017

Date Pubished: 2017/10/15
Date Online: 2017/07/30

Download PDF


JIMÉNEZ-UZCÁTEGUI, G., VINUEZA, R.L., URBINA, A.S., EGAS, D.A., GARCÍA, C., COTÍN, J. & SEVILLA, C. 2017. Lead and cadmium levels in Galapagos Penguin Spheniscus mendiculus, Flightless Cormorant Phalacrocorax harrisi, and Waved Albatross Phoebastria irrorata. Marine Ornithology 45: 159-163.

Key words: Heavy metals, threats, marine birds, Galápagos Archipelago


Heavy metals are a threat to wildlife, and they have yet to be analyzed in seabirds from the Galápagos Archipelago. To gauge their prevalence in Galápagos seabird species, we collected and analyzed feather samples from Galápagos Penguins Spheniscus mendiculus, Flightless Cormorants Phalacrocorax harrisi, and Waved Albatross Phoebastria irrorata in seven different breeding areas in 2011 and 2012 as part of an ongoing mark-recapture study. The results showed that lead is higher in penguins and cormorants; cadmium was found to be below the limit for quantification in all our samples. The heavy metals recorded did not have a clear local source related to human activities, as breeding areas are not located near populated areas. Environmental media (soil, water), marine currents, and atmospheric deposition are possible sources.


ABOUCHAMI, W., GALER, S.J.G., DE BAAR, H.J.W., ET AL. 2014. Biogeochemical cycling of cadmium isotopes in the Southern Ocean along the Zero Meridian. Geochimica et Cosmochimica Acta 127: 348-367. doi:10.1016/j.gca.2013.10.022

ANDERSON, O.R.J., PHILLIPS, R.A., SHORE, R.F., McGILL, R.A.R., McDONALD, R.A. & BEARHOP, S. 2010. Element patterns in albatrosses and petrels: influence of trophic position, foraging range, and prey type. Environmental Pollution 158: 98-107. doi:10.1016/j.envpol.2009.07.040

AWKERMAN, J.A., CRUZ, S., PROAÑO, C., ET AL. 2014. Small range and distinct distribution in a satellite breeding colony of the critically endangered waved albatross. Journal of Ornithology 155: 367-378. doi:10.1007/s10336-013-1013-9

BARBIERI, E., PASSOS, E.A., FILIPPINI, A., DOS SANTOS, I.S. & GARCIA, C.A.B. 2010. Assessment of trace metal concentration in feathers of seabirds (Larus dominicans) sampled in the Florianapolis, SC, Brazilian coast. Environmental Monitoring and Assessment 169: 631-638. doi:10.1007/s10661-009-1202-4

BRASSO, R.L., DRUMMOND, B.E., BORRETT, S.R., CHIARADIA, A., POLITO, M.J. & REY, A.R. 2013. Unique pattern of molt leads to low intraindividual variation in feather mercury concentrations in penguins. Environmental Toxicology and Chemistry 32: 2331-2334. doi:10.1002/etc.2303

BOERSMA, P.D., STEINFURTH, A., MERLEN, G., JIMÉNEZ-UZCÁTEGUI, G., VARGAS, F.H. & PARKER, P.G. 2013. Galapagos Penguin (Spheniscus mendiculus). In: GARCIA BORBOROGLU, P. & BOERSMA, P.D. (Eds.) Penguins: Natural History and Conservation. Seattle, WA: University of Washington Press.

BOERSMA, P.D. 2008. Penguins as marine sentinel. BioScience 58: 597-607 doi:10.1641/B580707.

BURGER, J. 1993. Metals in avian feathers: bioindicators of environmental pollution. Reviews Environmental Toxicology 5: 203-311.

BURGER, J. & GOCHFELD, M. 2004. Marine birds as sentinels of environmental pollution. EcoHealth 1: 263-274. doi:10.1007/s10393-004-0096-4

BURGER, J. & GOCHFELD, M. 2000. Metals in albatross feathers from Midway Atoll. Environmental Research 82: 207-221.

BURGER, J. & GOCHFELD, M. 1994. Heavy metal and selenium levels in birds at Agassiz National Wildlife refuge, Minnesota: Food Chain difference. Environmental Monitoring and Assessment 43: 267-282. doi:10.1007/BF00394454

CALLE, P., ALVARADO, O., MONSERRATE, L., CEVALLOS, J.M., CALLE, N. & ALAVA, J.J. 2014. Mercury accumulation in sediments and seabird feathers from the Antarctic Peninsula. Marine Pollution Bulletin 91: 410-417. doi:10.1016/j.marpolbul.2014.10.009

DUCE, R.A., LISS, P.S., MERRILL, J.T., ET AL. 1991. The atmospheric input of trace species to the World Ocean. Global biogeochemical cycles 5: 193-259. doi:10.1029/91GB01778

DELANEY, M.L., LINN, L.J. & DRUFFEL, E.R.M. 1993. Seasonal cycles of manganese and cadmium in coral from Galápagos Islands. Geochimica et Cosmochimica Acta 57: 347-354.

FURNESS, R.W. & GREENWOOD, J.J.D. (Eds.). 1993. Birds as Monitors of Environmental Change. London, UK: Chapman and Hall.

FINGER, A., LAVERS, J.L., DANN, P., ET AL. 2015. The Little Penguin (Eudyptula minor) as an indicator of coastal trace metal pollution. Environmental Pollution 205: 365-377. doi:10.1016/j.envpol.2015.06.022

HAYES, F.E. & BAKER, W.S. 1989. Seabird distribution at sea in the Galapagos Islands: Environmental correlations and associations with upwelled Water. Colonial Waterbirds 12: 60-66.

HINDELL, M.A., BROTHERS, N. & GALES, R. 1999. Mercury and cadmium concentrations in the tissues of three species of southern albatross. Polar Biology 22: 102-108.

HONDA, K., YAMAMOTO, Y., HIDAKA, H. & TATSUKAWA, R. 1986. Heavy metal accumulations in Adelie penguin, Pygoscelis adeliae, and their variations with the reproductive processes. Tokyo, Japan: Memoirs of National Institute Polar Research. 40: 443-453.

JEREZ, S., MOTAS, M., PALACIOS, M.J., VALERA, F., CUERVO, J.J. & BARBOSA, A. 2011. Concentration of trace elements in feathers of three Antarctic penguins: geographical and interspecific differences. Environmental Pollution 159: 2412-2419. doi:10.1016/j.envpol.2011.06.036

JIMÉNEZ-UZCÁTEGUI, G., MANGEL, J., ALFARO-SHIGUETO, J. & ANDERSON, D.J. 2006. Fishery bycatch of the waved albatross P. irrorata, a need for implementation of agreements. Galapagos Research 64: 7-9.

LARREA, C. 2007. Movimiento, dispersión y éxito reproductive del comorán no volador Phalacrocorax harrisi, en las islas Galápagos. Biology undergraduate thesis. Quito, Ecuador: Pontificia Universidad Católica del Ecuador.

METCHEVA, R., YURUKOVA, L., TEODORAVA, S. & NIKOLOVA, E. 2006. The penguin feathers as bioindicator of Antarctica environmental state. Science of Total Environmental 362: 259-265. doi:10.1016/j.scitotenv.2005.05.008

NIAZI, S.B. & LITTLEJOHN, D. 1993. Rapid partial digestion of biological tissues with nitric acid for the determination of trace elements by atomic spectrometry. Analyst 118: 821-825. doi:10.1039/AN9931800821

SECO PON, J.P., BELTRAMEC, O., MARCOVECCHIO, J., FAVERO, M. & GANDINI, P. 2011. Trace metals (Cd, Cr, Cu, Fe, Ni, Pb, and Zn) in feathers of Black-browed Albatross Thalassarche melanophrys attending the Patagonian Shelf. Marine Environmental Research 72: 40-45. doi:10.1016/j.marenvres.2011.04.004

SKORIC, S., VISNJIC-JEFTIC, Z., JARIC, I., ET AL. 2012. Accumulation of 20 elements in great cormorant (Phalacrocorax carbo) and its main prey, common carp (Cyprinus carpio) and Prussian carp (Carassius gibelio). Ecotoxicology and Environmental Safety 80: 244-251. doi:10.1016/j.ecoenv.2012.03.004

SNELL, H.M., STONE, P.A. & SNELL, H.L. 1996. A summary of geographical characteristics of the Galápagos Island. Journal of Biogeography 23: 619-624.

SQUADRONE, S., ABETE, M.C., BRIZIO, P., ET AL. 2016. Sex- and age-related variation in metal content of penguin feathers. Ecotoxicology 25: 431-438. doi:10.1007/s10646-015-1593-7

STEINFURTH, A., VARGAS, F.H., WILSON, R.P., SPINDLER, M. & MacDONALD, D.W. 2008. Space use by foraging Galapagos penguins during chick rearing. Endangered Species Research 4: 105-112. doi:10.3354/esr00046

SUN, l. & XIE, Z. 2001. Changes in lead concentration in Antarctic penguin droppings during the past 3,000 years. Environmental Geology 40: 1205-1208. doi:10.1007/s002540100346

TEASDALE, R., GEIST, D., KURTZ, M. & HARPP, K. 2005. 1998 Eruption at Volcán Cerro Azul, Galápagos Islands: I. Syn-Eruptive Petrogenesis. Bulletin of Volcanology 67: 170-185. doi:10.1007/s00445-004-0371-9

US ENVIRONMENTAL PROTECTION AGENCY (EPA). 2007. W-846 Test Method 7000B: Flame atomic absorption spectrophotometry. [Available online at: https://www.epa.gov/hw-sw846/sw-846-test-method-7000b-flame-atomic-absorption-spectrophotometry. Accessed 28 Jan 2016].

VEGA, C.M., SICILIANO, S., BARROCAS, P.R.G., ET AL. 2010. Levels of cadmium, mercury, and lead in Magellanic Penguins (Spheniscus magellanicus) stranded on the Brazilian coast. Archives of Environmental Contamination and Toxicology 58: 460-468. doi:10.1007/s00244-009-9349-0

© Marine Ornithology 2017