Volume 47, No. 2



Volumes > 38 (2010-->) Volumes 28-37 (2000-09) Volumes 18-27 (1990-99) Volumes 5-17 (1978-89)
a.k.a. Cormorant

Quick Search by author or article title:


Energy intake rate influences survival of Black Oystercatcher Haematopus bachmani broods


Authors

BRIAN H. ROBINSON1,4, LAURA M. PHILLIPS2 & ABBY N. POWELL3,5

1Department of Biology and Wildlife, University of Alaska, Fairbanks, AK 99775, USA
2National Park Service, Denali National Park and Preserve, Denali Park, AK 99775, USA
3US Geological Survey, Alaska Cooperative Fish and Wildlife Research Unit, Fairbanks, AK 99775, USA
4Current Address: US Geological Survey, Alaska Science Center, Anchorage, AK 99508, USA
5Current Address: US Geological Survey, Florida Cooperative Fish and Wildlife Research Unit, University of Florida, Gainesville, FL 32611, USA (abbypowell@ufl.edu)


Received 06 June 2019, accepted 14 August 2019

Date Published: 2019/10/15
Date Online: 2019/09/29


Download PDF

Citation

ROBINSON, B.H., PHILLIPS, L.M. & POWELL, A.N. 2019. Energy intake rate influences survival of Black Oystercatcher Haematopus bachmani broods. Marine Ornithology 47: 277-283.


Key words: Alaska, brood survival, chick diet, growth, parental care, provisioning rates


Abstract

The Black Oystercatcher Haematopus bachmani is a species of conservation concern that depends on marine intertidal prey resources. We examined diet, feeding rates, growth, and survival of Black Oystercatcher broods in southcentral Alaska, 2013-2014. To determine the importance of diet for brood survival, we modeled daily survival rates of broods as a function of energy intake rate and other ecological factors. We hypothesized that broods fed at higher energy intake rates would grow faster and fly earlier, and thus be less vulnerable to predators and have higher rates of survival. Consistent with our prediction, broods with higher energy intake rates had higher rates of growth and daily survival. Our best-supported model indicated that brood survival varied by energy intake rate and brood age. To understand how adults meet the increasing nutritional needs of developing chicks, we examined delivery rates, prey type, and prey size as a function of brood age. Delivery rates differed by age, but composition and size classes of prey items did not, indicating that adults respond to the rising energetic needs of broods by increasing parental effort rather than by switching prey. These findings demonstrate the importance of diet and provisioning to broods and, given the consequences of reduced energy intake on survival, indicate that climate change-related shifts in intertidal invertebrates could significantly impact Black Oystercatcher populations.


References

ANDRES, B.A. & FALXA, G.A. 1995. Black Oystercatcher (Haematopus bachmani), version 2.0. In: POOLE, A. & GILL, F.B. (Eds.) The Birds of North America. Ithaca, USA: Cornell Lab of Ornithology. [Accessed online at http://bna.birds.cornell.edu/bna/species/155 on 07 Sept 2017.] doi:10.2173/bna.155

BARBOZA, P.S., PARKER, K.L. & HUME, I.D. 2009. Integrative Wildlife Nutrition. Heidelberg, Germany: Springer Verlag.

BODKIN, J.L., COLETTI, H.A., BALLACHEY, B.E., MONSON, D.H., ESLER, D. & DEAN, T.A. 2018. Variation in abundance of Pacific Blue Mussel (Mytilus trossulus) in the Northern Gulf of Alaska, 2006-2015. Deep-Sea Research Part II 147: 87-97.

BAUMGÄRTNER, D. & ROTHHAUPT, K.-O. 2003. Predictive length-dry mass regressions for freshwater invertebrates in a pre-alpine lake littoral. International Review of Hydrobiology 88: 453-463. doi:10.1002/iroh.200310632

CARNEY, C.B. 2013. Diet patterns of Black Oystercatchers (Haematopus bachmani) in the northern Gulf of Alaska. MSc thesis. Anchorage, USA: University of Alaska Anchorage.

CHAPMAN, E.W., HOFMANN, E.E., PATTERSON, D.L. & FRASER, W.R. 2010. The effects of variability in Antarctic krill (Euphausia superba) spawning behavior and sex/maturity stage distribution on Adélie penguin (Pygoscelis adeliae) chick growth: A modeling study. Deep-Sea Research Part II 57: 543-558. doi:10.1016/j.dsr2.2009.10.005

COLWELL, M.A., HURLEY, S.J., HALL, J.N. & DINSMORE, S.J. 2007. Age-related survival and behavior of Snowy Plover chicks. The Condor 109: 638-647. doi:10.1650/8236.1

COOCH, E.G. & WHITE, G.C. (Eds.) 2002. Program MARK: A gentle introduction, 14th edition. Fort Collins, USA: Cooch & White. [Accessed online at http://www.phidot.org/software/mark/downloads/index.html on 24 July 2015.]

COOK, L.A. & NORRIS, F. 1998. A Stern and Rock-bound Coast: Kenai Fjords National Park Historic Resource Study. Anchorage, USA: National Park Service, Alaska Support Office.

FABRY, V.J., SEIBEL, B.A., FEELY, R.A. & ORR, J.C. 2008. Impacts of ocean acidification on marine fauna and ecosystem processes. ICES Journal of Marine Science 65: 414-432. doi:10.1093/icesjms/fsn048

GILL, V.A. & HATCH, S.A. 2002. Components of productivity in Black-legged Kittiwakes Rissa tridactyla: Response to supplemental feeding. Journal of Avian Biology 33: 113-126.

GILL, V.A., HATCH, S.A., & LANCTOT, R.B. 2004. Colonization, population growth, and nesting success of Black Oystercatchers following a seismic uplift. The Condor 106: 791-800. doi:10.1650/7539

GRENON, J.-F. & WALKER, G. 1981. The tenacity of the limpet, Patella vulgata L.: An experimental approach. Journal of Experimental Marine Biology and Ecology 54: 277-308. doi:10.1016/0022-0981(81)90162-3

GROVES, S. 1984. Chick growth, sibling rivalry, and chick production in American Black Oystercatchers. The Auk 101: 525-531.

HARLEY, C.D.G., HUGHES, A.R., HULTGREN, K.M. ET AL. 2006. The impacts of climate change in coastal marine systems. Ecology Letters 9: 228-241. doi:10.1111/j.1461-0248.2005.00871.x

HAZLITT, S.L., YDENBERG, R.C. & LANK, D.B. 2002. Territory structure, parental provisioning, and chick growth in the American Black Oystercatcher Haematopus bachmani. Ardea 90: 219-227.

HEG, D. & VAN DER VELDE, M. 2001. Effects of territory quality, food availability and sibling competition on the fledging success of oystercatchers (Haematopus ostralegus). Behavioral Ecology and Sociobiology 49: 157-169.

HIPFNER, J.M., & ELNER, R.W. 2013. Sea-surface temperature affects breeding density of an avian rocky intertidal predator, the Black Oystercatcher Haematopus bachmani. Journal of Experimental Marine Biology and Ecology 440: 29-34. doi:10.1016/j.jembe.2012.11.007

KERSTEN, M. & BRENNINKMEIJER, A. 1995. Growth, fledging success and post-fledging survival of juvenile oystercatchers Haematopus ostralegus. Ibis 137: 396-404. doi:10.1111/j.1474-919X.1995.tb08039.x

KOENIG, W.D. & WALTERS, E.L. 2012. An experimental study of chick provisioning in the cooperatively breeding Acorn Woodpecker. Ethology 118: 566-574. doi:10.1111/j.1439-0310.2012.02043.x

LESEBERG, A., HOCKEY, P.A.R. & LOEWENTHAL, D. 2000. Human disturbance and the chick-rearing ability of African Black Oystercatchers (Haematopus moquini): A geographical perspective. Biological Conservation 96: 379-385.

MABEE, T.J., WILDMAN, A.M. & JOHNSON, C.B. 2006. Using egg flotation and eggshell evidence to determine age and fate of Arctic shorebird nests. Journal of Field Ornithology 77: 163-172.

MCKINNON, L., PICOTIN, M., BOLDUC, E., JUILLET, C. & BÊTY, J. 2012. Timing of breeding, peak food availability, and effects of mismatch on chick growth in birds nesting in the High Arctic. Canadian Journal of Zoology 90: 961-971.

MENGE, B.A., CHAN, F. & LUBCHENCO, J. 2008. Response of a rocky intertidal ecosystem engineer and community dominant to climate change. Ecology Letters 11: 151-162. doi:10.1111/j.1461-0248.2007.01135.x

MØLLER, A.P., CHRISTE, P., ERRITZØE, J. & MAVAREZ, J. 1998. Condition, disease and immune defense. Oikos 83: 301-306.

MORSE, J.A., POWELL, A.N. & TETREAU, M.D. 2006. Productivity of Black Oystercatchers: Effects of recreational disturbance in a National Park. The Condor 108: 623-633.

NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION (NOAA). 2008. Tidal Station Locations and Ranges. Washington, USA: NOAA. [Accessed online at http://tidesandcurrents.noaa.gov/tides09/tab2wc2b.html on 16 May 2013.]

NISBET, I.C.T., SPENDELOW, J.A., & HATFIELD, J.S. 1995. Variations in growth of Roseate Tern chicks. The Condor 97: 335-344.

R DEVELOPMENT CORE TEAM 2014. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. [Accessed online at http://www.r-project.org on 05 May 2014.]

RICKLEFS, R.E. 1973. Patterns of growth in birds. II. Growth rate and mode of development. Ibis 115: 177-201.

RITZ, M.S., HAHN, S. & PETER, H.-U. 2005. Factors affecting chick growth in the South Polar Skua (Catharacta maccormicki): Food supply, weather and hatching date. Polar Biology 29: 53-60.

ROBINSON, B.H., COLETTI, H.A., PHILLIPS, L.M. & POWELL, A.N. 2018. Are prey remains accurate indicators of chick diet?  A comparison of diet quantification techniques for Black Oystercatchers. Wader Study 125: 20-32. doi:10.18194/ws.00105

RUTHRAUFF, D.R. & MCCAFFERY, B.J. 2005. Survival of Western Sandpiper broods on the Yukon-Kuskokwim Delta, Alaska. The Condor 107: 597-604. doi:10.1650/0010-5422(2005)107[0597:SOWSBO]2.0.CO;2

SCHULTE, S.A. & SIMONS, T.S. 2015. Factors affecting the reproductive success of American Oystercatchers Haematopus palliates on the outer banks of North Carolina. Marine Ornithology 43: 37-47.

SPENCER, P. & IRVINE, G.V. 2004. Ecological overview of Kenai Fjords National Park. Alaska Park Science 3: 5-11.

TESSLER, D.F., JOHNSON, J.A., ANDRES, B.A., THOMAS, S. & LANCTOT, R. 2010. Black Oystercatcher (Haematopus bachmani) Conservation Action Plan. Version 1.1. Anchorage, USA: International Black Oystercatcher Working Group, Alaska Department of Fish and Game, US Fish and Wildlife Service; and Manomet, USA: Manomet Center for Conservation Sciences.

TESSLER, D.F., JOHNSON, J.A., ANDRES, B.A., THOMAS, S. & LANCTOT, R.B. 2014. A global assessment of the conservation status of the Black Oystercatcher Haematopus bachmani. International Wader Studies 20: 83-96.

TJØRVE, K.M.C., UNDERHILL, L.G. & VISSER, G.H. 2007. Energetics of growth in semi-precocial shorebird chicks in a warm environment: The African Black Oystercatcher, Haematopus moquini. Zoology 110: 176-88. doi:10.1016/j.zool.2007.01.002

VANSOMEREN, L.L., BARBOZA, P.S., THOMPSON, D.P. & GUSTINE, D.D. 2015. Monitoring digestibility of forages for herbivores: A new application for an old approach. Canadian Journal of Zoology 93: 187-195.

VERMEER, K., MORGAN, K.H. & SMITH, G.E.J. 1992. Black Oystercatcher habitat selection, reproductive success, and their relationship with Glaucous-winged Gulls. Colonial Waterbirds 15: 14-23.

WHITE, G.C. & BURNHAM, K.P. 1999. Program MARK: Survival estimation from populations of marked animals. Bird Study 46: S120-S139. doi:10.1080/00063659909477239


© Marine Ornithology 2022