Menu

Volume 50, No. 2

Search by author or title:

At-colony behaviour of Great Black-backed Gulls Larus marinus following breeding failure


Authors

LAURIE D. MAYNARD*, JULIA GULKA, EDWARD JENKINS & GAIL K. DAVOREN

Citation

MAYNARD, L.D., GULKA, J., JENKINS, E. & DAVOREN, G.K. 2022. At-colony behaviour of Great Black-backed Gulls Larus marinus following breeding failure. Marine Ornithology 50: 197 - 204

Received 19 March 2022, accepted 13 July 2022

Date Published: 2022/10/15
Date Online: 2022/09/22
Key words: breeding failure, tag effect, gulls, breeding behaviour

Abstract

Territoriality for breeding sites comes at an energetic cost—individuals actively defend the site from competitors and potential predators, thus precluding themselves from self-maintenance (e.g., foraging, preening) or offspring care. Breeding individuals are also constrained to central-place foraging within a limited range of the territory. For these reasons, many seabirds do not spend extensive periods or make regular visits to the colony following breeding failure. To investigate behaviour following breeding failure, we studied colony and nest attendance and daily number of visits for six Great Black-backed Gulls Larus marinus that had failed to breed following global positioning system (GPS) tag attachment on the northeast coast of Newfoundland, Canada. Three failed breeders reduced colony and nest attendance by an average 6.32 h/d (95% confidence interval: 1.14) after the estimated date of failure. Conversely, three other failed breeders showed no decrease in attendance, and one individual increased colony attendance by 5.4 h/d. We predicted that failed breeders would be more likely to forage while attending the colony relative to active breeders (i.e., incubating or chick-rearing) due to their lack of offspring and territory to defend. During 18 two-hour nest watches of active and failed breeders, active breeders (n = 4) behaved more aggressively (e.g., predation, swooping) toward gulls at nearby sites in the colony, while failed breeders (n = 6) behaved mostly passively (e.g., preening, sitting, P = 0.029). Our findings indicate that failed breeders continue to attend the colony after breeding failure, indicating potential benefits (e.g., maintaining breeding territory and pair bonding). Our findings also reveal that using tracking data to indicate breeding failure may be misleading and, thus, we suggest researchers also use visual confirmation of breeding failure, when possible, in future studies. Finally, we warn researchers of the negative effects of tag attachment on gull reproductive success.

La protection d'un territoire de reproduction vient avec des coûts énergétiques, où les individus doivent défendre activement le site contre des compétiteurs et des prédateurs. Durant la défense, ils ne peuvent s'investir dans le soin d'eux-mêmes (e.g., alimentation, lissage) ou de leurs poussins. Les individus reproducteurs sont aussi restreints à l'intérieur d'une distance maximale de leur territoire lors des déplacements alimentaires (lieu central d'alimentation). Ainsi, plusieurs espèces d'oiseaux marins ne continuent pas de visiter régulièrement ou rester longtemps sur la colonie après un échec reproducteur. Nous avons étudié le comportement et la fréquence de visite de la colonie et du nid chez six goélands marins (Larus marinus) suivant le déploiement d'appareils de suivi par système mondial de positionnement (GPS) et un échec reproducteur sur la côte nord-est de Terre-Neuve, Canada. Trois des individus ont réduit la durée des visites à la colonie et au nid de 6.32 h/j en moyenne (Intervalle de confiance 95%: 1.14) à la suite de l'échec reproductif. À l'opposé, trois autres individus n'ont montré aucune réduction en durée et fréquence des visites après la date estimée d'échec et un individu a même augmenté la durée des visites à la colonie de 5.4 h/j. Nous avons prédit que les goélands avec un échec reproductif auront plus tendance à s'alimentater durant leur visites à la colonie que les goélands reproducteurs puisqu'ils n'ont pas de poussins à protéger. Durant 18 suivis des nids de 2 heures, les reproducteurs (n = 4) étaient plus agressifs (e.g., prédation, descente en piqué) vers d'autres goélands des sites voisins, alors que les goélands avec échec (n = 6) étaient plus passifs (e.g., lissage des plumes, position assise, P = 0.029). Les résultats indiquent que certains individus avec échec reproducteurs continuent de visiter la colonie, ce qui indique la présence de bénéfices (e.g., maintien du territoire de reproduction ou renforcement des liens du couple), mais aussi que les données de suivi télémétriques (i.e., taux de visites au nid ou colonie) ne sont pas toujours assez fiables pour déterminer le statut reproducteur et nous suggérons aux études futures de confirmer visuellement l'échec reproductif. Enfin, nous prévenons les chercheurs sur les effets négatifs sur la reproduction des goélands par la pose d'appareil de suivis.

References


AINLEY, D.G. & BOEKELHEIDE R. J. 1990. Seabirds of the Farallon Islands: Ecology, Structure and Dynamics of an Upwelling System Community. Palo Alto, USA: Stanford University Press.

BIJLEVELD, A.I., EGAS, M., VAN GILS, J.A. & PIERSMA, T. 2010. Beyond the information centre hypothesis: Communal roosting for information on food, predators, travel companions and mates? Oikos 119: 277-285. doi:10.1111/j.1600-0706.2009.17892.x

BORRMANN, R.M., PHILLIPS, R.A., CLAY, T.A. & GARTHE, S. 2019. High foraging site fidelity and spatial segregation among individual Great Black‐backed Gulls. Journal of Avian Biology 50: jav.02156. doi:10.1111/jav.02156

BROWN, J.L., BROWN, E.R., SEDRANSK, J. & RITTER, S. 1997. Dominance, age, and reproductive success in a complex society: A long-term study of the Mexican Jay. The Auk 114: 279-286. doi:10.2307/4089168

BUKACINSKA, M., BUKACINSKI, D. & SPAANS, A. 1996. Attendance and diet in relation to breeding success in Herring Gulls (Larus argentatus). The Auk 113: 300-309. doi:10.2307/4088896

BURGER, J. & SCHREIBER, E.A. (Eds.) 2001. Biology of Marine Birds. Boca Raton, USA: CRC Press. doi:10.1201/9781420036305

BUTLER, R.G. & JANES-BUTLER, S. 1982. Territoriality and behavioral correlates of reproductive success of Great Black-backed Gulls. The Auk 99: 58-66. doi:10.2307/4086021

BUTLER, R.G. & TRIVELPIECE, W. 1981. Nest spacing, reproductive success, and behavior of the Great Black-Backed Gull (Larus marinus). The Auk 98: 99-107.

CALLADINE, J. & HARRIS, M.P. 1997. Intermittent breeding in the Herring Gull Larus argentatus and the Lesser Black-backed Gull Larus fuscus. Ibis 139: 259-263. doi:10.1111/j.1474-919X.1997.tb04623.x

CUBAYNES, S., DOHERTY, P.F., SCHREIBER, E.A. & GIMENEZ, O. 2011. To breed or not to breed: A seabird's response to extreme climatic events. Biology Letters 7: 303-306. doi:10.1098/rsbl.2010.0778

DANCHIN, É., GIRALDEAU, L.-A. & CÉZILLY, F. 2012. Écologie Comportementale. Paris, France: Dunod.

DAVIS, J.W.F. & DUNN, E.K. 1976. Intraspecific predation and colonial breeding in Lesser Black‐backed Gulls Larus Fuscus. Ibis 118: 65-77. doi:10.1111/j.1474-919X.1976.tb02011.x

DOMINGUEZ, L., MONTEVECCHI, W.A., BURGESS, N.M., BRAZIL, J. & HOBSON, K.A. 2003. Reproductive success, environmental contaminants, and trophic status of nesting Bald Eagles in eastern Newfoundland, Canada. Journal of Raptor Research 37: 209-218.

DRENT, R.H. 1970. Functional aspects of incubation in the Herring Gull. Behavior 17: 1-132.

FRID, A. & DILL, L. 2002. Human-caused disturbance stimuli as a form of predation risk. Ecology and Society 6: 11. doi:10.5751/es-00404-060111

GILL, F.B. 2006. Ornithology. 3rd Edition. New York, USA: Freeman & Co.

GOOD, T.P. 2020. Great Black-backed Gull (Larus marinus), version 1.0. In S. M. BILLERMAN (Ed.) Birds of the World. Ithaca, USA: Cornell Lab of Ornithology. doi: 10.2173/bow.gbbgul.01

HELBERG, M., BUSTNES, J.O., ERIKSTAD, K.E., KRISTIANSEN, K.O. & SKAARE, J.U. 2005. Relationships between reproductive performance and organochlorine contaminants in Great Black-backed Gulls (Larus marinus). Environmental Pollution 134: 475-483. doi:10.1016/j.envpol.2004.09.006

HINDE, A. 1956. The biological significance of the territories of birds. Ibis 98: 340-369. doi:10.1111/j.1474-919X.1956.tb01419.x

HUNT, G.L., Jr. 1972. Influence of food distribution and human disturbance on the reproductive success of Herring Gulls. Ecology 53: 1051-1061.

IGUAL, J.M., ORO, D. & TAVECCHIA, G. 2013. The biparental pattern of incubation and its relationship to food availability in the Yellow-legged Gull Larus michahellis. Ardeola 60: 365-370. doi:10.13157/arla.60.2.2013.365

IRONS, D.B. 1998. Foraging area fidelity of individual seabirds in relation to tidal cycles and flock feeding. Ecology 79: 647-655. doi:10.1890/0012-9658(1998)079[0647:FAFOIS]2.0.CO;2

ISAKSSON, N., EVANS, T.J., SHAMOUN-BARANES, J. & ÅKESSON, S. 2016. Land or sea? Foraging area choice during breeding by an omnivorous gull. Movement Ecology 4: 11. doi:10.1186/s40462-016-0078-5

JUVASTE, R., ARRIERO, E., GAGLIARDO, A. ET AL. 2017. Satellite tracking of red-listed nominate Lesser Black-backed Gulls (Larus f. fuscus): Habitat specialisation in foraging movements raises novel conservation needs. Global Ecology and Conservation 10: 220-230. doi:10.1016/j.gecco.2017.03.009

KAZAMA, K., HIRATA, K., YAMAMOTO, T. ET AL. 2013. Movements and activities of male Black-tailed Gulls in breeding and sabbatical years. Journal of Avian Biology 44: 603-608. doi:10.1111/j.1600-048X.2013.00103.x

KENNY, E., BIRKHEAD, T.R. & GREEN, J.P. 2017. Allopreening in birds is associated with parental cooperation over offspring care and stable pair bonds across years. Behavioral Ecology 28: 1142-1148. doi:10.1093/beheco/arx078

KOKKO, H., HARRIS, M.P. & WANLESS, S. 2004. Competition for breeding sites and site-dependent population regulation in a highly colonial seabird, the Common Guillemot Uria aalge. Journal of Animal Ecology 73: 367-376. doi:10.1111/j.0021-8790.2004.00813.x

KREBS, J.R. 2002. Optimal foraging, predation risk and territory defence. Ardea 55: 83-90. doi:10.5253/arde.v68.p83

KRÜGER, O. 2002. Analysis of nest occupancy and nest reproduction in two sympatric raptors: Common Buzzard Buteo buteo and goshawk Accipiter gentilis. Ecography 25: 523-532. doi:10.1034/j.1600-0587.2002.250502.x

MALLORY, M.L. & GILBERT, C.D. 2008. Leg-loop harness design for attaching external transmitters to seabirds. Marine Ornithology 36: 183-188.

MARTIN, P. & BATESON, P. 2007. Measuring Behaviour: An Introductory Guide. 3rd Edition. Cambridge, UK: Cambridge University Press.

MASELLO, J.F., WIKELSKI, M., VOIGT, C.C. & QUILLFELDT, P. 2013. Distribution patterns predict individual specialization in the diet of Dolphin Gulls. PLoS One 8: e67714. doi:10.1371/journal.pone.0067714

MAWHINNEY, K. & DIAMOND, T. 1999. Sex determination of Great Black-backed Gulls using morphometric characters. Journal of Field Ornithology 70: 206-210.

MAYNARD, L.D. & DAVOREN, G.K. 2018. Sea ice influence habitat type use by Great Black-backed Gulls (Larus marinus) in coastal Newfoundland, Canada. Waterbirds 41: 449-456.

MAYNARD, L.S., & DAVOREN, G.K. 2020. Inter-colony and interspecific differences in the isotopic niche of two sympatric gull species. Marine Ornithology 48: 103-109.

MAYNARD, L.D., GULKA, J., JENKINS, E. & DAVOREN, G.K. 2021. Different individual-level responses of Great Black-backed Gulls (Larus marinus) to shifting local prey availability. PLoS One 16: e0252561. doi:10.1371/journal.pone.0252561

MAYNARD, L.D. & RONCONI, R.A. 2018. Foraging behaviour of Great Black-backed Gull Larus marinus near an urban center in Atlantic Canada: Evidence of individual specialization from GPS tracking. Marine Ornithology 46: 27-32.

ORIANS, G.H. & PEARSON, N.E. 1979. On the theory of central place foraging. In: HORN, D. MITCHELL, R. & STRAITS, G. (Eds.) Analysis of Ecological Systems. Athens, USA: Ohio University Press.

PONCHON, A., CHAMBERT, T., LOBATO, E., TVERAA, T., GRÉMILLET, D. & BOULINIER, T. 2015. Breeding failure induces large scale prospecting movements in the Black-legged Kittiwake. Journal of Experimental Marine Biology and Ecology 473: 138-145. doi:10.1016/j.jembe.2015.08.013

PONCHON, A., ILISZKO, L., GRÉMILLET, D., TVERAA, T. & BOULINIER, T. 2017. Intense prospecting movements of failed breeders nesting in an unsuccessful breeding subcolony. Animal Behaviour 124: 183-191. doi:10.1016/J.ANBEHAV.2016.12.017

QGIS DEVELOPMENT TEAM. 2021. QGIS Geographic Information System. Open Source Geospatial Foundation Project.

R DEVELOPMENT CORE TEAM 2018. R: A language and environment for statistical computing. Vienna, Austria: The R Foundation for Statistical Computing.

SCHREIBER, R.W. 1967. Roosting behavior of the Herring Gull in central Maine. The Wilson Bulletin 79: 421-431.

SCOPEL, L.C. & DIAMOND, A.W. 2017. The case for lethal control of gulls on seabird colonies. Journal of Wildlife Management 81: 1-9. doi:10.1002/jwmg.21233

SHAMOUN-BARANES, J., BOUTEN, W., CAMPHUYSEN, C.J. & BAAIJ, E. 2011. Riding the tide: Intriguing observations of gulls resting at sea during breeding. Ibis 153: 411-415. doi:10.1111/j.1474-919

SHLEPR, K.R., RONCONI, R.A., HAYDEN, B., ALLARD, K.A. & DIAMOND, A.W. 2021. Estimating the relative use of anthropogenic resources by Herring Gull (Larus argentatus) in the Bay of Fundy, Canada. Avian Conservation and Ecology 16: 2. doi:10.5751/ace-01739-160102

SPEAR, L, & NUR, N. 1994. Brood size, hatching order and hatching date : Effects on four life-history stages from hatching to recruitment in Western Gulls. Journal of Animal Ecology 63: 283-298.

SPOON, T.R., MILLAM, J.R. & OWINGS, D.H. 2006. The importance of mate behavioural compatibility in parenting and reproductive success by Cockatiels, Nymphicus hollandicus. Animal Behaviour 71: 315-326. doi:10.1016/j.anbehav.2005.03.034

STACEY, P.B. 1982. Female promiscuity and male reproductive success in social birds and mammals. The American Naturalist 120: 51-64.

STENHOUSE, I.J. & MONTEVECCHI, W.A. 1999. Indirect effects of the availability of capelin and fishery discards: Gull predation on breeding storm-petrels. Marine Ecology Progress Series 184: 303-307. doi:10.3354/meps184303

THAXTER, C.B., ROSS-SMITH, V.H., CLARK, J.A. ET AL. 2014. A trial of three harness attachment methods and their suitability for long-term use on Lesser Black-backed Gulls and Great Skuas. Ringing & Migration 29: 65-76. doi:10.1080/03078698.2014.995546

VEITCH, B.G., ROBERTSON, G.J., JONES, I.L. & BOND, L. 2016. Great Black-backed Gull (Larus marinus) predation on seabird populations at two colonies in Eastern Canada. Waterbirds 39: 235-245. doi:10.1675/063.039.sp121

WILHELM, S.I., MAILHIOT, J., ARANY, J., CHARDINE, J.W., ROBERTSON, G.J. & RYAN, P.C. 2015. Update and trends of three important seabird populations in the Western North Atlantic using a Geographic Information System approach. Marine Ornithology 43: 211-222.

ZANGMEISTER, J.L, HAUSSMAN, M.F., CERCHIARA, J. & MAUCK, R.A. 2009. Incubation failure and nest abandonment by Leach's Storm-Petrels detected using PIT tags and temperature loggers. Journal of Field Ornithology 80: 373-379. doi:10.1111/j.1557-9263.2009.00243.x

ZEILIS, A., LEISCH, F., HORNIK, K., KLEIBER, C. & KLEIBER, K.H.A. 2002. strucchange: An R package for testing for structural change in linear regression models. Journal of Statistical Software 7: 1-38.

Search by author or title:

Browse previous volumes: