Menu

Volume 53, No. 2

Search by author or title:

From tropical shores to high-altitude lakes: Preliminary assessment of trans-Himalayan migration of Brown-headed Gulls Chroicocephalus brunnicephalus between Sri Lanka and the Tibetan Plateau.


Authors

GAYOMINI PANAGODA1,2, IROMI K. WIJETHUNGE3,4, BEIXI ZHANG3,5, FANJUAN MENG3, YIWEN CHEN3,6, SARATH KOTAGAMA1, TAEJ MUNDKUR7,8, SIVANANINTHAPERUMAL BALACHANDRAN9,10, LEI CAO3,4, & SAMPATH S. SENEVIRATNE1,2*
1Field Ornithology Group of Sri Lanka, Department of Zoology and Environment Sciences, Faculty of Science, University of Colombo, Colombo 03, Sri Lanka *(sam@sci.cmb.ac.lk)
2Avian Sciences and Conservation, Department of Zoology and Environment Sciences, Faculty of Science, University of Colombo, Colombo 03, Sri Lanka
3State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
4University of Chinese Academy of Sciences, Beijing 100049, China
5School of Life Science, South China Normal University, Guangzhou 510631, China
6School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
7Good Earth Environmental, De Pas 148, Arnhem, 6836HN, The Netherlands
8Wetlands International, Horapark 9, 6717 LZ Ede, The Netherlands
9Bombay Natural History Society, Hornbill House, Shahid Bhagat Singh Rd, Lion Gate, Fort, Mumbai, Maharashtra 400001, India
10Migratory Bird Monitoring Trust, 11/85, Middle Street, Agasteeswaram, Kanyakumari District, Tamil Nadu 629701, India

Citation

Panagoda, G., Wijethunge, I. K., Zhang, B., Meng, F., Chen, Y., Kotagama, S., Mundkur, T., Balachandran, S., Cao, L., & Seneviratne, S. S. (2025). From tropical shores to high-altitude lakes: Preliminary assessment of trans-Himalayan migration of Brown-headed Gulls Chroicocephalus brunnicephalus between Sri Lanka and the Tibetan Plateau. Marine Ornithology 53(2), 315-330
http://doi.org/10.5038/2074-1235.53.2.1660

Received 19 March 2025, accepted 14 June 2025

Date Published: 2025/10/15
Date Online: 2025/10/07
Key words: Central Asian Flyway, GPS-GSM transmitters, Himalayan crossing, Mannar, migration, seabirds

Abstract

The Brown-headed Gull (BHGU) Chroicocephalus brunnicephalus is a common non-breeding migrant to Sri Lanka's coasts. However, its migration across the Central Asian Flyway—traversing numerous geographic barriers such as the Himalayas and the Tibetan Plateau to reach the southern Indian peninsula and Sri Lanka—has not been studied. We GPS-tracked two BHGUs between Sri Lanka and their breeding grounds on the Tibetan Plateau from 2021 to 2023, documenting four migrations in total—three northward and one southward. During northward migration (25 April-20 May), the gulls covered 2,786.7 ± 168.0 km in 6.8 ± 1.05 d without any stopovers, although they made several rest stops (< 48 h each), including along the Ganges River in northern India. BHGU1 remained on the Tibetan Plateau for 157 d; BHGU2's duration of stay is unknown due to a temporary device failure. Southward migration occurred between 06 October and 19 December, with BHGU2's migration taking > 31 d, including two stopovers totaling 13 d along India's west coast. Notably, both gulls followed India's east coast during northward migration, whereas BHGU2 followed the west coast southward, indicating a loop migration pattern. The gulls crossed the Himalayas at ground elevations of 3,568-6,003 m above sea level, navigating three main regions: Annapurna, Khumbu/Everest, and Kanchenjunga. They often used valleys and gorges such as the Marsyangdi Valley, Kali Gandaki Gorge, and Dudh Koshi River, although they also occasionally flew over or near the main Himalayan peaks. Our findings reveal new insights into the extreme altitudes reached by migrating BHGUs, both while crossing the Himalayas and flying over inland India, even in the absence of topographic constraints. Further tagging of this non-breeding population is needed to explore potential age- or sex-related variation in migratory strategies, and to understand how this relatively small species (372.5 ± 53.0 g) manages high-altitude migration—a trait previously studied primarily in larger birds.

References


Alerstam, T., & Gudmundsson, G. A. (1999). Migration patterns of tundra birds: Tracking radar observations along the Northeast Passage. Arctic, 52(4), 325-440. https://doi.org/10.14430/arctic941

Baert, J. M., Stienen, E. W. M., Heylen, B. C., Kavelaars, M. M., Buijs, R.-J., Shamoun-Baranes, J., Lens, L., & Müller, W. (2018). High-resolution GPS tracking reveals sex differences in migratory behaviour and stopover habitat use in the Lesser Black-backed Gull Larus fuscus. Scientific Reports, 8(1), 5391. https://doi.org/10.1038/s41598-018-23605-x

Banerjee, P., & Bansal, S. (2017). Revisit of moving average technique for smoothing GNSS based timing data. MAPAN, 32(1), 77-85. https://doi.org/10.1007/s12647-016-0200-6

Barry, R. G. (2008). Mountain weather and climate (3rd ed). Cambridge University Press. https://doi.org/10.1017/CBO9780511754753

Batbayar, N., & Lee, H. (2017). Steppe Eagle migration from Mongolia to India. In H. H. T. Prins & T. Namgail (Eds.), Bird migration across the Himalayas (1st ed.; pp. 117-127). Cambridge University Press. https://doi.org/10.1017/9781316335420.010

Bayly, N. J., Rosenberg, K. V., Easton, W. E., Gómez, C., Carlisle, J., Ewert, D. N., Drake, A., & Goodrich, L. (2018). Major stopover regions and migratory bottlenecks for Nearctic-Neotropical landbirds within the Neotropics: A review. Bird Conservation International, 28(1), 1-26. https://doi.org/10.1017/S0959270917000296

Benhamou, S. (2004). How to reliably estimate the tortuosity of an animal's path. Journal of Theoretical Biology, 229(2), 209-220. https://doi.org/10.1016/j.jtbi.2004.03.016

Bijlsma, R. G. (1991). Migration of raptors and Demoiselle Cranes over central Nepal. Birds of Prey Bulletin, 4, 73-80.

Bildstein, K. L. (2006). Migrating raptors of the world: Their ecology and conservation. Cornell University Press.

BirdLife International. (2024). Brown-headed Gull (Larus brunnicephalus)—BirdLife species factsheet. Retrieved March 24, 2024, from https://datazone.birdlife.org/species/factsheet/brown-headed-gull-larus-brunnicephalus/refs

Bishop, C. M., Spivey, R. J., Hawkes, L. A., Batbayar, N., Chua, B., Frappell, P. B., Milsom, W. K., Natsagdorj, T., Newman, S. H., Scott, G. R., Takekawa, J. Y., Wikelski, M., & Butler, P. J. (2015). The roller coaster flight strategy of bar-headed geese conserves energy during Himalayan migrations. Science, 347(6219), 6219. https://doi.org/10.1126/science.1258732

Bogožalec Košir, A., Lužnik, D., Tomič, V., & Milavec, M. (2023). Evaluation of DNA extraction methods for reliable quantification of Acinetobacter baumannii, Klebsiella pneumoniae, and Pseudomonas aeruginosa. Biosensors, 13(4), 463. https://doi.org/10.3390/bios13040463

Bouten, W., Baaij, E. W., Shamoun-Baranes, J., & Camphuysen, K. C. J. (2013). A flexible GPS tracking system for studying bird behaviour at multiple scales. Journal of Ornithology, 154(2), 571-580. https://doi.org/10.1007/s10336-012-0908-1

Burger, J., Gochfeld, M., & Garcia, E. (2020). Brown-headed Gull (Chroicocephalus brunnicephalus), version 1.0. In J. del Hoyo, A. Elliott, J. Sargatal, D. A. Christie, & E. de Juana (Eds.), Birds of the world. Cornell Lab of Ornithology. https://doi.org/10.2173/bow.bnhgul1.01

Chettri, N., Rastogi, A., & Singh, O. P. (2006). Assessment of raptor migration and status along the Tsangpo-Brahmaputra corridor (India) by a local community's participatory survey. Avocetta, 30, 61-68.

del Hoyo, J., Elliott, A., & Sargatal, J. (1996). Handbook of the birds of the world: Hoatzin to Auks (Vol. 3). Lynx Edicions.

Delany, S., Williams, C., Sulston, C., Norton, J., & Garbutt, D. (2017a). Passerine Migration across the Himalayas. In H. H. T. Prins & T. Namgail (Eds.), Bird migration across the Himalayas: Wetland functioning amidst mountains and glaciers (pp. 58-81). Cambridge University Press. https://doi.org/10.1017/9781316335420.007

Delany, S., Williams, C., Sulston, C., Norton, J., & Garbutt, D. (2017b). Wader migration across the Himalayas. In H. H. T. Prins & T. Namgail (Eds.), Bird migration across the Himalayas: Wetland functioning amidst mountains and glaciers (pp. 82-97). Cambridge University Press. https://doi.org/10.1017/9781316335420.008

Deng, X., Zhao, Q., Fang, L., Xu, Z., Wang, X., He, H., Cao, L., & Fox, A. D. (2019). Spring migration duration exceeds that of autumn migration in Far East Asian Greater White-fronted Geese (Anser albifrons). Avian Research, 10(1), 19. https://doi.org/10.1186/s40657-019-0157-6

Dixon, A., Rahman, L., Sokolov, A., & Sokolov, V. (2017). Peregrine Falcons crossing the ‘Roof of the World.' In H. H. T. Prins & T. Namgail (Eds.), Bird migration across the Himalayas (1st ed., pp. 128-142). Cambridge University Press. https://doi.org/10.1017/9781316335420.011

Dutta, P., & Konwar, D. M. (2013). Morphological aspects of floodplain wetlands with reference to the Upper Brahmaputra River Valley. International Journal of Scientific and Research Publications, 3(9), 9.

Edelhoff, H., Signer, J., & Balkenhol, N. (2016). Path segmentation for beginners: An overview of current methods for detecting changes in animal movement patterns. Movement Ecology, 4(1), 21. https://doi.org/10.1186/s40462-016-0086-5

Engel, S., Biebach, H., & Visser, G. H. (2006). Water and heat balance during flight in the rose-colored starling (Sturnus roseus). Physiological and Biochemical Zoology: PBZ, 79(4), 763-764. https://doi.org/10.1086/504610

Fourment, M., Darling, A. E., & Holmes, E. C. (2017). The impact of migratory flyways on the spread of avian influenza virus in North America. BMC Evolutionary Biology, 17(1), 118. https://doi.org/10.1186/s12862-017-0965-4

Fridolfsson, A.-K., & Ellegren, H. (1999). A simple and universal method for molecular sexing of non-ratite birds. Journal of Avian Biology, 30(1), 116-121. https://doi.org/10.2307/3677252

Galtbalt, B., Batbayar, N., Sukhbaatar, T., Vorneweg, B., Heine, G., Müller, U., Wikelski, M., & Klaassen, M. (2022). Differences in on-ground and aloft conditions explain seasonally different migration paths in Demoiselle crane. Movement Ecology, 10(1), 4. https://doi.org/10.1186/s40462-022-00302-z

Groen, T. A., & Prins, H. H. T. (2017). Distance-altitude trade-off may explain why some migratory birds fly over and not around the Himalayas. In H. H. T. Prins & T. Namgail (Eds.), Bird migration across the Himalayas: Wetland functioning amidst mountains and glaciers (pp. 254-268). Cambridge University Press. https://doi.org/10.1017/9781316335420.020

Global Register of Migratory Species. (2004, May 3). Species fact sheet-Larus brunnicephalus. Global Register of Migratory Species. http://www.groms.de/Species_HTMLs/Lbrunnic.html

Gu, D., Chai, Y., Gu, Y., Hou, J., Cao, L., & Fox, A. D. (2019). Annual migration routes, stopover patterns and diurnal activity of Eurasian Bitterns Botaurus stellaris wintering in China. Bird Study, 66(1), 43-52. https://doi.org/10.1080/00063657.2019.1608906

Gudmundsson, G. A., & Alerstam, T. (1998). Optimal map projections for analysing long-distance migration routes. Journal of Avian Biology, 29(4), 597-605. https://doi.org/10.2307/3677180

Guo-Gang, Z., Dong-Ping, L., Yun-Qiu, H., Hong-Xing, J., Ming, D., Fa-Wen, Q., Jun, L., Tian, M., Li-Xia, C., Zhi, X., & Feng-Shan, L. (2014). Migration routes and stopover sites of Pallas's Gulls Larus ichthyaetus breeding at Qinghai Lake, China, determined by satellite tracking. Forktail, 30, 104-108.

Harrison, P., Perrow, M. R., & Larsson, H. (2021). Seabirds: The new identification guide. Lynx Nature Books.

Hawkes, L. A., Balachandran, S., Batbayar, N., Butler, P. J., Chua, B., Douglas, D. C., Frappell, P. B., Hou, Y., Milsom, W. K., Newman, S. H., Prosser, D. J., Sathiyaselvam, P., Scott, G. R., Takekawa, J. Y., Natsagdorj, T., Wikelski, M., Witt, M. J., Yan, B., & Bishop, C. M. (2013). The paradox of extreme high-altitude migration in Bar-headed Geese Anser indicus. Proceedings of the Royal Society B: Biological Sciences, 280(1750), 20122114. https://doi.org/10.1098/rspb.2012.2114

Hawkes, L. A., Balachandran, S., Batbayar, N., Butler, P. J., Frappell, P. B., Milsom, W. K., Tseveenmyadag, N., Newman, S. H., Scott, G. R., Sathiyaselvam, P., & Takekawa, J. Y. (2011). The trans-Himalayan flights of Bar-headed Geese (Anser indicus). Proceedings of the National Academy of Sciences, 108(23), 9516-9519. https://doi.org/10.1073/pnas.101729510

Hawkes, L. A., Batbayar, N., Bishop, C. M., Butler, P. J., Frappell, P. B., Meir, J. U., Milsom, W. K., Natsagdorj, T., & Scott, G. S. (2017). Goose migration over the Himalayas: Physiological adaptations. In H. H. T. Prins & T. Namgail (Eds.), Bird migration across the Himalayas: Wetland functioning amidst mountains and glaciers (pp. 241-253). Cambridge University Press. https://doi.org/10.1017/9781316335420.019

Higuchi, H., & Minton, J. (2017). Migratory routes across the Himalayas used by Demoiselle Cranes. In H. H. T. Prins & T. Namgail (Eds.), Bird migration across the Himalayas: Wetland functioning amidst mountains and glaciers (pp. 45-57). Cambridge University Press. https://doi.org/10.1017/9781316335420.006

Humbert-Droz, B. (2017). Impacts of tourism and military presence on wetlands and their avifauna in the Himalayas. In H. H. T. Prins & T. Namgail (Eds.), Bird migration across the Himalayas: Wetland functioning amidst mountains and glaciers (pp. 342-358). Cambridge University Press. https://doi.org/10.1017/9781316335420.026

Inskipp, C., & Inskipp, T. (1991). A guide to the birds of Nepal. Smithsonian Institution Press.

Javed, S., Takekawa, J. Y., Douglas, D. C., Rahmani, A. R., Choudhury, B. C., Landfried, S. L., & Sharma, S. (2000). Documenting trans-Himalayan migration through satellite telemetry: A report on capture, deployment, and tracking of bar-headed goose (Anser indicus). Department of Wildlife Services, Aligarh Muslim University, and the Wildlife Institute of India. https://pubs.usgs.gov/publication/1017431

Juhant, M. A., & Bildstein, K. L. (2017). Raptor migration across and around the Himalayas. In H. H. T. Prins & T. Namgail (Eds.), Bird migration across the Himalayas: Wetland functioning amidst mountains and glaciers (pp. 98-116). Cambridge University Press. https://doi.org/10.1017/9781316335420.009

Jun, W., Zhongbo, S., & Yaoming, M. (2004). Reconstruction of a cloud-free vegetation index time series for the Tibetan Plateau. Mountain Research and Development, 24(4), 348-353. https://doi.org/10.1659/0276-4741(2004)024[0348:ROACVI]2.0.CO;2

Kerlinger, P. (1989). Flight strategies of migrating hawks. University of Chicago Press. https://doi.org.10.1126/science.248.4961.1429

Klaassen, R. H. G., Ens, B. J., Shamoun-Baranes, J., Exo, K.-M., & Bairlein, F. (2012). Migration strategy of a flight generalist, the Lesser Black-backed Gull Larus fuscus. Behavioral Ecology, 23(1), 58-68. https://doi.org/10.1093/beheco/arr150

Klaassen, R. H. G., Strandberg, R., Hake, M., Olofsson, P., Tøttrup, A. P., & Alerstam, T. (2010). Loop migration in adult marsh harriers Circus aeruginosus, as revealed by satellite telemetry. Journal of Avian Biology, 41(2), 200-207. https://doi.org/10.1111/j.1600-048X.2010.05058.x

Klvaňa, P., Cepák, J., Munclinger, P., Michálková, R., Tomášek, O., & Albrecht, T. (2018). Around the Mediterranean: An extreme example of loop migration in a long‐distance migratory passerine. Journal of Avian Biology, 49(2), jav-01595. https://doi.org/10.1111/jav.01595

Kölzsch, A., Müskens, G. J. D. M., Kruckenberg, H., Glazov, P., Weinzierl, R., Nolet, B. A., & Wikelski, M. (2016). Towards a new understanding of migration timing: Slower spring than autumn migration in geese reflects different decision rules for stopover use and departure. Oikos, 125(10), 1496-1507. https://doi.org/10.1111/oik.03121

Kumar, N., Gupta, U., Jhala, Y. V., Qureshi, Q., Gosler, A. G., & Sergio, F. (2020). GPS-telemetry unveils the regular high-elevation crossing of the Himalayas by a migratory raptor: Implications for definition of a “Central Asian Flyway.” Scientific Reports, 10(1), 15988. https://doi.org/10.1038/s41598-020-72970-z

Li, D., Davison, G., Lisovski, S., Battley, P. F., Ma, Z., Yang, S., How, C. B., Watkins, D., Round, P., Yee, A., Srinivasan, V., Teo, C., Teo, R., Loo, A., Leong, C. C., & Er, K. (2020). Shorebirds wintering in Southeast Asia demonstrate trans-Himalayan flights. Scientific Reports, 10(1), 21232. https://doi.org/10.1038/s41598-020-77897-z

Liechti, F., & Schaller, E. (1999). The use of low-level jets by migrating birds. Naturwissenschaften, 86(11), 549-551. https://doi.org/10.1007/s001140050673

Literák, I., Škrábal, J., Karyakin, I. V., Andreyenkova, N. G., & Vazhov, S. V. (2022). Black Kites on a flyway between Western Siberia and the Indian Subcontinent. Scientific Reports, 12(1), 5581. https://doi.org/10.1038/s41598-022-09246-1

Liu, D., Zhang, G., Jiang, H., & Lu, J. (2018). Detours in long-distance migration across the Qinghai-Tibetan Plateau: Individual consistency and habitat associations. PeerJ, 6, e4304. https://doi.org/10.7717/peerj.4304

Liu, Y., & Chen, S. (2021). The CNG field guide to the birds of China (1st ed; Chinese Edition). Hunan Science and Technology Press, China.

Marques, P. A. M., Costa, A. M., Rock, P., & Jorge, P. E. (2009). Age-related migration patterns in Larus fuscus spp. Acta Ethologica, 12(2), 87-92. https://doi.org/10.1007/s10211-009-0060-y

Marques, P. A. M., Sowter, D., & Jorge, P. E. (2010). Gulls can change their migratory behavior during lifetime. Oikos, 119(6), 946-951. https://doi.org/10.1111/j.1600-0706.2009.18192.x

McDuie, F., Casazza, M. L., Overton, C. T., Herzog, M. P., Hartman, C. A., Peterson, S. H., Feldheim, C. L., & Ackerman, J. T. (2019). GPS tracking data reveals daily spatio-temporal movement patterns of waterfowl. Movement Ecology, 7(1), 6. https://doi.org/10.1186/s40462-019-0146-8

Mundkur, T., Ananzeh, A., Chaudhary, A., Evans, M., Jia, Y., Koshkina, A., Kumar, R., Nergui, J., Niven, R., Rao, M., Scott, T., & Al Taq, M. (2023). Central Asian Flyway—situation analysis: The status of migratory birds and their habitats and recommendations for their conservation. BirdLife International. https://coilink.org/20.500.12592/47d82q0

Mundkur, T., & Langendoen, T. (2022). Report on the conservation status of migratory waterbirds of the East Asian-Australasian Flyway (1st ed.). Report to the East Asian-Australasian Flyway Partnership. Wetlands International. https://www.wetlands.org/publication/eaaf-conservation-status-review1/

Mundkur, T., Langendoen, T., & Watkins, D. (2017). The Asian waterbird census 2008-2015: Results of coordinated counts in Asia and Australasia. Wetlands International South-Asia. https://south-asia.wetlands.org/wp-content/uploads/sites/8/dlm_uploads/2017/12/AWC_2008-2015_Summary_Report_6Apr17.pdf

Muzaffar, S., Takekawa, J., Prosser, D., Douglas, D., Yan, B., Xing, Z., Hou, Y., Palm, E. C., & Newman, S. (2008). Seasonal movements and migration of Pallas's Gulls Larus ichthyaetus from Qinghai Lake, China. Forktail, 24, 100-107.

Namgail, T., Takekawa, J. Y., Balachandran, S., Palm, E. C., Mundkur, T., Vélez, V. M., Prosser, D. J., & Newman, S. H. (2017). Himalayan thoroughfare: Migratory routes of ducks over the rooftop of the world. In H. H. T. Prins & T. Namgail (Eds.), Bird migration across the Himalayas: Wetland functioning amidst mountains and glaciers (pp. 30-44). Cambridge University Press. https://doi.org/10.1017/9781316335420.021

Newton, I. (2008). The migration ecology of birds (1st ed.). Elsevier-Academic Press. https://doi.org.10.1016/B978-0-12-517367-4.X5000-1

Newton, I. (2011). Migration within the annual cycle: Species, sex and age differences. Journal of Ornithology, 152(S1), 169-185. https://doi.org/10.1007/s10336-011-0689-y

Nilsson, C., Klaassen, R. H. G., & Alerstam, T. (2013). Differences in speed and duration of bird migration between spring and autumn. The American Naturalist, 181(6), 837-845. https://doi.org/10.1086/670335

Panagoda, G., Wijethunge, I. K., Zhang, B., Meng, F., Liu, Y., Kotagama, S., Mundkur, T., Balachandran, S., Cao, L., & Seneviratne, S. S. (2025). A transcontinental migratory passage linking the Indian Ocean with the Arctic Ocean: Migration of Heuglin's Gulls from Tropics to Arctic. Biotropica, 57(3), e70045. https://doi.org/10.1111/btp.70045

Parr, N. (2019). Flights across the Roof of the World (Publication No. 28130830) [Doctoral dissertation, University of Exeter]. ProQuest Dissertations and Theses Global.

Prins, H. H. T., Jansen, R. J., & Vélez, V. M. (2017). Refuelling stations for waterbirds: Macroinvertebrate biomass in relation to altitude in the trans-Himalayas. In H. H. T. Prins & T. Namgail (Eds.), Bird migration across the Himalayas: Wetland functioning amidst mountains and glaciers (pp. 269-282). Cambridge University Press. https://doi.org/10.1017/9781316335420.021

Prins, H. H. T., & Namgail, T. (2017). Introduction. In H. H. T. Prins & T. Namgail (Eds.), Bird migration across the Himalayas: Wetland functioning amidst mountains and glaciers (pp. 1-12). Cambridge University Press. https://doi.org/10.1017/9781316335420.003

R Core Team. (2023). R: A language and environment for statistical computing (Version 4.2.2) [Computer software]. R Foundation for Statistical Computing. https://www.R-project.org/

Rasool, M., & Johari, G. K. (2021). The process of development and landscape change in South Asia: An overview of transformation of himalayan environment. Elementary Education Online, 19(3), 4907-4922.

Ratanakorn, P., Wiratsudakul, A., Wiriyarat, W., Eiamampai, K., Farmer, A. H., Webster, R. G., Chaichoune, K., Suwanpakdee, S., Pothieng, D., & Puthavathana, P. (2012). Satellite tracking on the flyways of brown-headed gulls and their potential role in the spread of highly pathogenic avian influenza H5N1 virus. PLoS ONE, 7(11), e49939. https://doi.org/10.1371/journal.pone.0049939

Rayner, J. M. (1988). Form and function in avian flight. In R. F. Johnston (Ed.), Current Ornithology (pp. 1-66). Springer. https://doi.org/10.1007/978-1-4615-6787-5_1

Schmaljohann, H., Liechti, F., & Bruderer, B. (2008). First records of Lesser Black-Backed Gulls Larus fuscus crossing the Sahara non-stop. Journal of Avian Biology, 39(2), 233-237. https://doi.org/10.1111/j.2007.0908-8857.04174.x

Scott, G. R., Hawkes, L. A., Frappell, P. B., Butler, P. J., Bishop, C. M., & Milsom, W. K. (2015). How Bar-headed Geese fly over the Himalayas. Physiology, 30(2), 107-115. https://doi.org/10.1152/physiol.00050.2014

Senner, N. R., Stager, M., Verhoeven, M. A., Cheviron, Z. A., Piersma, T., & Bouten, W. (2018). High-altitude shorebird migration in the absence of topographical barriers: Avoiding high air temperatures and searching for profitable winds. Proceedings of the Royal Society B: Biological Sciences, 285(1881), 20180569. https://doi.org/10.1098/rspb.2018.0569

Seutin, G., White, B., & Boag, P. (1991). Preservation of avian blood and tissue samples for DNA analyses. Canadian Journal of Zoology, 69(1), 82-90. https://doi.org/10.1139/z91-013

Shamoun-Baranes, J., Bouten, W., Camphuysen, C. J., & Baaij, E. (2011). Riding the tide: Intriguing observations of gulls resting at sea during breeding. Ibis, 153(2), 411-415. https://doi.org/10.1111/j.1474-919X.2010.01096.x

Shamoun-Baranes, J., van Loon, E., van Gastere, H., van Belle, J., Bouten, W., & Buurma, L. (2006). A comparative analysis of the influence of weather on the flight altitudes of birds. Bulletin of the American Meteorological Society, 87(1), 47-62. https://doi.org/10.1175/BAMS-87-1-47

State of India's Birds. (2023). State of India's Birds, 2023: Range, trends, and conservation status. SoIB Partnership. http://doi.org/10.5281/zenodo.11124590

Takekawa, J. Y., Palm, E. C., Prosser, D. J., Hawkes, L. A., Batbayar, N., Balachandran, S., Luo, Z., Xiao, X., & Newman, S. H. (2017). Goose migration across the Himalayas: Migratory routes and movement patterns of Bar-headed Geese. In H. H. T. Prins & T. Namgail (Eds.), Bird migration across the Himalayas: Wetland functioning amidst mountains and glaciers (1st ed., pp. 15-29). Cambridge University Press. https://doi.org/10.1017/9781316335420.004

Thieurmel, B., Elmarhraoui, A., & Thieurmel, M. B. (2019). Package ‘suncalc' (R package version 0.5) [Computer software]. Available at https://cran.r-project.org/package=suncalc

Turbek, S. P., Schield, D. R., Scordato, E. S. C., Contina, A., Da, X.-W., Liu, Y., Liu, Y., Pagani-Núñez, E., Ren, Q.-M., Smith, C. C. R., Stricker, C. A., Wunder, M., Zonana, D. M., & Safran, R. J. (2022). A migratory divide spanning two continents is associated with genomic and ecological divergence. Evolution, 76(4), 722-736. https://doi.org/10.1111/evo.14448

U.S. Geological Survey's Center for Earth Resources Observation and Science. (1996). 30 arc-second DEM of Asia/Data Basin [Dataset]. https://databasin.org/datasets/366a1bef53344c02bcd7d7611d5f61f7/

Van Wijk, R. E., Kölzsch, A., Kruckenberg, H., Ebbinge, B. S., Müskens, G. J. D. M., & Nolet, B. A. (2012). Individually tracked geese follow peaks of temperature acceleration during spring migration. Oikos, 121(5), 655-664. https://doi.org/10.1111/j.1600-0706.2011.20083.x

Wang, X., Cao, L., Batbayar, N., & Fox, A. D. (2018a). Variability among autumn migration patterns of Mongolian Common Shelducks (Tadorna tadorna). Avian Research, 9(1), 46. https://doi.org/10.1186/s40657-018-0138-1

Wang, X., Cao, L., Bysykatova, I., Xu, Z., Rozenfeld, S., Jeong, W., Vangeluwe, D., Zhao, Y., Xie, T., Yi, K., & Fox, A. D. (2018b). The Far East taiga forest: Unrecognized inhospitable terrain for migrating Arctic-nesting waterbirds? PeerJ, 6, e4353. https://doi.org/10.7717/peerj.4353

Wetlands International. (2024). Waterbird population estimates [Dataset].Waterbird Populations Portal. Retrieved March 24, 2024, from https://wpp.wetlands.org/explore/3220/1083?conservation=2

Yang, X., Zhang, T., Qin, D., Kang, S., & Qin, X. (2011). Characteristics and changes in air temperature and glacier's response on the north slope of Mt. Qomolangma (Mt. Everest). Arctic, Antarctic, and Alpine Research, 43(1), 147-160. https://doi.org/10.1657/1938-4246-43.1.147

Yu, X., Song, G., Wang, H., Wei, Q., Jia, C., & Lei, F. (2024). Migratory flyways and connectivity of Brown Headed Gulls (Chroicocephalus brunnicephalus) revealed by GPS tracking. Global Ecology and Conservation, 56, e03340. https://doi.org/10.1016/j.gecco.2024.e03340

Search by author or title:

Browse previous volumes: