Key words: diet, feathers, mercury, molt, monitoring, stable isotope analysis
References
Bearhop, S., Phillips, R. A., Thompson, D. R., Waldron, S., & Furness, R. W. (2000). Variability in mercury concentrations of great skuas
Catharacta skua: The influence of colony, diet and trophic status inferred from stable isotope signatures.
Marine Ecology Progress Series,
195, 261-268.
https://doi.org/10.3354/meps195261
Bearhop, S., Thompson, D. R., Waldron, S., Russell, I. C., Alexander, G., & Furness, R. W. (1999). Stable isotopes indicate the extent of freshwater feeding by cormorants
Phalacrocorax carbo shot at inland fisheries in England.
Journal of Applied Ecology,
36(1), 75-84.
https://www.jstor.org/stable/2655696
Bearhop, S., Waldron, S., Votier, S. C., & Furness, R. W. (2002). Factors that influence assimilation rates and fractionation of nitrogen and carbon stable isotopes in avian blood and feathers.
Physiological Biochemical and Zoology,
75(5), 451-458.
https://doi.org/10.1086/342800
Bond, A. L. (2010). Relationships between stable isotopes and metal contaminants in feathers are spurious and biologically uninformative.
Environmental Pollution,
158(5), 1182-1184.
https://doi.org/10.1016/j.envpol.2010.01.004
Braune, B. M. (1987). Comparison of total mercury levels in relation to diet and molt for nine species of marine birds.
Archives of Environmental Contamination and Toxicology,
16, 217-224.
https://doi.org/10.1007/BF01055802
Carravieri, A., Bustamante, P., Churlaud, C., Fromant, A., & Cherel, Y. (2014). Moulting patterns drive within-individual variations of stable isotopes and mercury in seabird body feathers: Implications for monitoring of the marine environment.
Marine Biology,
161, 963-968.
https://doi.org/10.1007/s00227-014-2394-x
Cherel, Y., Hobson, K. A., & Weimerskirch, H. (2000). Using stable-isotope analysis of feathers to distinguish moulting and breeding origins of seabirds.
Oecologia,
122, 155-162.
https://doi.org/10.1007/PL00008843
Furness, R. W. (1993). Birds as monitors of pollutants. In R. W. Furness & J. J. D. Greenwood (Eds.), Birds as monitors of environmental change (pp. 86-143). Chapman and Hall.
Furness, R. W., Muirhead, S. J., & Woodburn, M. (1986). Using bird feathers to measure mercury in the environment: Relationships between mercury content and moult.
Marine Pollution Bulletin,
17(1), 27-30.
https://doi.org/10.1016/0025-326X(86)90801-5
Gatt, M. C., Furtado, R., Granadeiro, J. P., Lopes, D., Pereira, E., & Catry, P. (2021). Untangling causes of variation in mercury concentration between flight feathers.
Environmental Pollution,
269, Article 116105.
https://doi.org/10.1016/j.envpol.2020.116105
Gómez-Ramírez, P., Bustnes, J. O., Eulaers, I., Johnsen, T. V., Lepoint, G., Pérez-García, J. M., García-Fernández, A. J., Espín, S., & Jaspers, V. L. B. (2023). Mercury exposure in birds of prey from Norway: Relation to stable carbon and nitrogen isotope signatures in body feathers.
Bulletin of Environmental Contamination and Toxicology,
110(6), Article 100.
https://doi.org/10.1007/s00128-023-03740-6
Grecian, W. J., Mcgill, R. A. R., Phillips, R. A., Ryan, P. G., & Furness, R. W. (2015). Quantifying variation in
δ13C and
δ15N isotopes within and between feathers and individuals: Is one sample enough?
Marine Biology,
162, 733-741.
https://doi.org/10.1007/s00227-015-2618-8
Hobson, K. A., & Clark, R. G. (1992). Assessing avian diets using stable isotopes I: Turnover of
13C in tissues.
Condor,
94(1), 181-188.
https://doi.org/10.2307/1368807
Kazama, K., Hirata, K., Yamamoto, T., Hashimoto, H., Takahashi, A., Niizuma, Y., Trathan, P. N., & Watanuki, Y. (2013). Movements and activities of male black-tailed gulls in breeding and sabbatical years.
Journal of Avian Biology,
44(1), 603-608.
https://doi.org/10.1111/j.1600-048X.2013.00103.x
Lescroël, A., Mathevet, R., Péron, C., Authier, M., Provost, P., Takahashi, A., & Grémillet, D. (2016). Seeing the ocean through the eyes of seabirds: A new path for marine conservation?
Marine Policy,
68, 212-220.
https://doi.org/10.1016/j.marpol.2016.02.015
Martínez, A., Crespo, D., Fernández, J. Á., Aboal, J. R., & Carballeira, A. (2012). Selection of flight feathers from
Buteo buteo and
Accipiter gentilis for use in biomonitoring heavy metal contamination.
Science of the Total Environment,
425, 254-261.
https://doi.org/10.1016/j.scitotenv.2012.03.017
Mizutani, H., Fukuda, M., Kabaya, Y., & Wada, E. (1990). Carbon isotope ratio of feathers reveals feeding behavior of cormorants.
The Auk,
107(2), 400-403.
https://www.jstor.org/stable/4087626
Monteiro, L. R., & Furness, R. W. (1995). Seabirds as monitors of mercury in the marine environment.
Water, Air, and Soil Pollution,
80, 851-870.
https://doi.org/10.1007/BF01189736
Nisbet, I. C. T., Montoya, J. P., Burger, J., & Hatch, J. J. (2002). Use of stable isotopes to investigate individual differences in diets and mercury exposures among common terns
Sterna hirundo in breeding and wintering grounds.
Marine Ecology Progress Series,
242, 267-274.
https://doi.org/10.3354/meps242267
Olsen, K. M. (2004). Gulls of Europe, Asia and North America. Helm.
Peterson, S. H., Ackerman, J. T., Toney, M., & Herzog, M. P. (2019). Mercury concentrations vary within and among individual bird feathers: A critical evaluation and guidelines for feather use in mercury monitoring programs.
Environmental Toxicology and Chemistry,
38(6), 1164-1187.
https://doi.org/10.1002/etc.4430
Pyle, P., Ayyash, A., & Bartosik, M. B. (2018). Replacement of primaries during prealternate molts in North American
Larus gulls.
Western Birds,
49(4), 293-306.
https://doi.org/10.21199/WB49.4.9
R Core Team. (2018).
R: A language and environment for statistical computing (Version 4.1.2) [Computer software]. R Foundation for Statistical Computing.
https://www.R-project.org/
Tani, H., Shirai, M., Mizutani, Y., & Niizuma, Y. (2023). The growth rate of Black-tailed Gull chicks is negatively related to total mercury of female parents on Kabushima (Kabu Island), Japan.
Avian Conservation and Ecology,
18(1), Article 14.
https://doi.org/10.5751/ACE-02416-180114
Thompson, D. R., Bearhop, S., Speakman, J. R., & Furness, R. W. (1998). Feathers as a means of monitoring mercury in seabirds: Insights from stable isotope analysis.
Environmental Pollution,
101(2), 193-200.
https://doi.org/10.1016/S0269-7491(98)00078-5
Thompson, D. R., & Furness, R. W., (1995). Stable-isotope ratios of carbon and nitrogen in feathers indicate seasonal dietary shifts in northern fulmars.
The Auk,
112(2), 493-498.
https://www.jstor.org/stable/4088739
Tomita, N., Mizutani, Y., Fujii, H., Sugiura, R., Yanai, T., Asano, M., & Niizuma, Y. (2010). Mortality of adult Black-tailed Gulls
Larus crassirostris on Kabu Island, Aomori Prefecture.
Japanese Journal of Ornithology,
59(1), 80-83.
https://doi.org/10.3838/jjo.59.80
Tomita, N., Mizutani, Y., Trathan, P. N., & Niizuma, Y. (2015). Relationship between non-breeding migratory movements and stable isotopes of nitrogen and carbon from primary feathers of Black-tailed Gull
Larus crassirostris.
Ornithological Science,
14(1), 3-11.
https://doi.org/10.2326/osj.14.3
Wada, E., Terazaki, M., Kabaya, Y., & Nemoto, T. (1987).
15N and
13C abundances in the Antartic Ocean with emphasis on the biogeochemical structure of the food web.
Deep Sea Research Part A. Oceanographic Research Papers,
34(5-6), 829-841.
https://doi.org/10.1016/0198-0149(87)90039-2
Watanuki, Y., Yamamoto, T., Yamashita, A., Ishii, C., Ikenaka, Y., Nakayama, S. M. M., Ishizuka, M., Suzuki, Y., Niizuma, Y., Meathrel, C. E, & Phillips, R. A. (2015). Mercury concentrations in primary feathers reflect pollutant exposure in discrete non-breeding grounds used by Short-tailed Shearwaters.
Journal of Ornithology,
156, 847-850.
https://doi.org/10.1007/s10336-015-1205-6